COVID-19 induces more pronounced extracellular matrix deposition than other causes of ARDS

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Citação
RESPIRATORY RESEARCH, v.24, n.1, article ID 281, 11p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundLung fibrosis is a major concern in severe COVID-19 patients undergoing mechanical ventilation (MV). Lung fibrosis frequency in post-COVID syndrome is highly variable and even if the risk is proportionally small, many patients could be affected. However, there is still no data on lung extracellular matrix (ECM) composition in severe COVID-19 and whether it is different from other aetiologies of ARDS.MethodsWe have quantified different ECM elements and TGF-beta expression in lung tissue of 28 fatal COVID-19 cases and compared to 27 patients that died of other causes of ARDS, divided according to MV duration (up to six days or seven days or more). In COVID-19 cases, ECM elements were correlated with lung transcriptomics and cytokines profile.ResultsWe observed that COVID-19 cases presented significant increased deposition of collagen, fibronectin, versican, and TGF-beta, and decreased decorin density when compared to non-COVID-19 cases of similar MV duration. TGF-beta was precociously increased in COVID-19 patients with MV duration up to six days. Lung collagen was higher in women with COVID-19, with a transition of upregulated genes related to fibrillogenesis to collagen production and ECM disassembly along the MV course.ConclusionsFatal COVID-19 is associated with an early TGF-beta expression lung environment after the MV onset, followed by a disordered ECM assembly. This uncontrolled process resulted in a prominent collagen deposition when compared to other causes of ARDS. Our data provides pathological substrates to better understand the high prevalence of pulmonary abnormalities in patients surviving COVID-19.
Palavras-chave
COVID-19, Lung fibrosis, Extracellular matrix, Autopsy
Referências
  1. Al-Husinat L, 2022, FRONT MED-LAUSANNE, V9, DOI 10.3389/fmed.2022.1017257
  2. Andersson-Sjöland A, 2015, GLYCOBIOLOGY, V25, P243, DOI 10.1093/glycob/cwu120
  3. Annoni R, 2012, EUR RESPIR J, V40, P1362, DOI 10.1183/09031936.00192611
  4. Bai F, 2022, CLIN MICROBIOL INFEC, V28, DOI 10.1016/j.cmi.2021.11.002
  5. Burnham EL, 2014, EUR RESPIR J, V43, P276, DOI 10.1183/09031936.00196412
  6. Cabrera-Benitez NE, 2014, ANESTHESIOLOGY, V121, P189, DOI 10.1097/ALN.0000000000000264
  7. Chen C, 2022, J INFECT DIS, V226, P1593, DOI 10.1093/infdis/jiac136
  8. Duarte-Neto AN, 2020, HISTOPATHOLOGY, V77, P186, DOI 10.1111/his.14160
  9. Erjefalt JS, 2022, EBIOMEDICINE, V83, DOI 10.1016/j.ebiom.2022.104229
  10. Ferreira JC, 2022, J GLOB HEALTH, V12, DOI 10.7189/jogh.12.05029
  11. Ferreira-Gomes M, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-22210-3
  12. Goetsch KP, 2016, BIOCHEM BIOPH RES CO, V479, P351, DOI 10.1016/j.bbrc.2016.09.079
  13. Hemmat N, 2021, ARCH VIROL, V166, P675, DOI 10.1007/s00705-021-04958-7
  14. Hu ZJ, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.585647
  15. Ichikado K, 2012, BMJ OPEN, V2, DOI 10.1136/bmjopen-2011-000545
  16. Keene DR, 2000, J BIOL CHEM, V275, P21801, DOI 10.1074/jbc.C000278200
  17. Lemanska-Perek A, 2022, CELLS-BASEL, V11, DOI 10.3390/cells11091566
  18. Li XH, 2021, RESP RES, V22, DOI 10.1186/s12931-021-01798-6
  19. Li Y, 2021, HISTOPATHOLOGY, V78, P542, DOI 10.1111/his.14249
  20. Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
  21. Maquart FX, 2004, CRIT REV ONCOL HEMAT, V49, P199, DOI 10.1016/j.critrevonc.2003.06.007
  22. Mauad T, 2021, RESP RES, V22, DOI 10.1186/s12931-021-01628-9
  23. Mothes R, 2023, NAT COMMUN, V14, DOI 10.1038/s41467-023-36333-2
  24. Norian JM, 2009, REPROD SCI, V16, P1153, DOI 10.1177/1933719109343310
  25. Okada H, 2011, J AM SOC NEPHROL, V22, P588, DOI 10.1681/ASN.2011020131
  26. Overmyer Katherine A, 2021, Cell Syst, V12, P23, DOI [10.1101/2020.07.17.20156513, 10.1016/j.cels.2020.10.003]
  27. Ranieri VM, 2012, JAMA-J AM MED ASSOC, V307, P2526, DOI 10.1001/jama.2012.5669
  28. Robey RC, 2021, ADV THER, V38, P4505, DOI 10.1007/s12325-021-01833-4
  29. Sheng W, 2005, MOL BIOL CELL, V16, P1330, DOI 10.1091/mbc.E04-04-0295
  30. Todorovic V, 2012, J CELL BIOCHEM, V113, P410, DOI 10.1002/jcb.23385
  31. Tsukui T, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-15647-5
  32. Ulloa L, 1999, NATURE, V397, P710, DOI 10.1038/17826
  33. de Paula CBV, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23010168
  34. Wendisch D, 2021, CELL, V184, P6243, DOI 10.1016/j.cell.2021.11.033
  35. Wight TN, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.00512
  36. Xu JC, 2020, RESP RES, V21, DOI 10.1186/s12931-020-01445-6
  37. YAMAGUCHI Y, 1990, NATURE, V346, P281, DOI 10.1038/346281a0
  38. Zhou Y, 2018, MATRIX BIOL, V73, P77, DOI 10.1016/j.matbio.2018.03.005
  39. Znaidia M, 2022, VIRUSES-BASEL, V14, DOI 10.3390/v14061247