Discovery of Novel miRNAs in Colorectal Cancer: Potential Biological Roles and Clinical Utility

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
MINUTENTAG, Iael Weissberg
SENEDA, Ana Laura
BARROS-FILHOS, Mateus C.
CARVALHO, Marcio de
SOUZA, Vanessa G. P.
HASIMOTO, Claudia N.
MORAES, Marcelo P. T.
LAM, Wan L.
REIS, Patricia P.
Citação
NON-CODING RNA, v.9, n.6, article ID 65, 16p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Deregulated miRNAs are associated with colorectal cancer (CRC), with alterations depending on the tumor location. Novel tissue-specific miRNAs have been identified in different tumors and are associated with cancer. We used miRMaster to identify novel miRNAs in CRC from the TCGA and GEO data (discovery and validation groups). We used TCGA data from five tissues to analyze miRNA tissue specificity. miRDB was used to predict miRNA targets, and the UCSC Xena Browser was used to evaluate target expression. After successive analyses, we identified 15 novel miRNAs with the same expression patterns in CRC in both the discovery and validation groups. Four molecules (nov-miR-13844-5p, nov-miR-7154-5p, nov-miR-5035-3p, and nov-miR-590-5p) were differentially expressed in proximal and distal CRC. The nov-miR-3345-5p and nov-miR-13172-3p, which are upregulated in tumors, are only expressed in colorectal tissues. These molecules have been linked to a worse prognosis in right-sided colon and rectal carcinomas. An analysis revealed an association between eight novel miRNAs and 81 targets, mostly cancer-related genes, with varying expression based on tumor location. These findings provide new miRNAs with potential biological relevance, molecular biomarkers, and therapeutic targets for CRC treatment.
Palavras-chave
colorectal cancer, tumor location, novel microRNA, miRMaster, tissue specificity, prognosis, small-RNAseq
Referências
  1. Ahmed Z, 2021, GENE REP, V23, DOI 10.1016/j.genrep.2021.101129
  2. Arribas J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0157761
  3. Barros MC, 2019, J HUM GENET, V64, P505, DOI 10.1038/s10038-019-0583-7
  4. Chang GM, 2010, CLIN CANCER RES, V16, P5390, DOI 10.1158/1078-0432.CCR-10-1461
  5. Chen L, 2018, AM J CANCER RES, V8, P2387
  6. Chen YH, 2020, NUCLEIC ACIDS RES, V48, pD127, DOI 10.1093/nar/gkz757
  7. Chung Y, 2020, DIAGNOSTICS, V10, DOI 10.3390/diagnostics10121097
  8. Cui XR, 2020, CANCER MANAG RES, V12, P2899, DOI 10.2147/CMAR.S240942
  9. Dai YY, 2017, ONCOTARGETS THER, V10, P1603, DOI 10.2147/OTT.S118151
  10. Debacker K, 2007, HUM MOL GENET, V16, pR150, DOI 10.1093/hmg/ddm136
  11. Demsar J, 2013, J MACH LEARN RES, V14, P2349
  12. Eneh S, 2020, ANTICANCER RES, V40, P3713, DOI 10.21873/anticanres.14360
  13. Friedländer MR, 2014, GENOME BIOL, V15, DOI 10.1186/gb-2014-15-4-r57
  14. Goldman MJ, 2020, NAT BIOTECHNOL, V38, P675, DOI 10.1038/s41587-020-0546-8
  15. Gu ZG, 2016, BIOINFORMATICS, V32, P2847, DOI 10.1093/bioinformatics/btw313
  16. INCA (Instituto Nacional de Cancer Jose Alencar Gomes da Silva), 2022, Incidencia de Cancer No Brasil 2023
  17. Kumar R, 2019, BMC GENOMICS, V19, DOI 10.1186/s12864-018-5330-5
  18. Laganà A, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011166
  19. Lai SH, 2020, ONCOGENE, V39, P3791, DOI 10.1038/s41388-020-1258-8
  20. Lee E, 2023, CANCERS, V15, DOI 10.3390/cancers15092430
  21. Liang C, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.911856
  22. Liu WJ, 2019, GENOME BIOL, V20, DOI 10.1186/s13059-019-1629-z
  23. Londin E, 2015, P NATL ACAD SCI USA, V112, pE1106, DOI 10.1073/pnas.1420955112
  24. Loree JM, 2018, CLIN CANCER RES, V24, P1062, DOI 10.1158/1078-0432.CCR-17-2484
  25. Martinez VD, 2019, AM J RESP CELL MOL, V61, P266, DOI 10.1165/rcmb.2018-0204LE
  26. Metsalu T, 2015, NUCLEIC ACIDS RES, V43, pW566, DOI 10.1093/nar/gkv468
  27. Mirceta M, 2022, FRONT GENET, V13, DOI 10.3389/fgene.2022.985975
  28. Noetzel E, 2010, ONCOGENE, V29, P4814, DOI 10.1038/onc.2010.229
  29. Omrane I, 2014, BIOMED RES INT-UK, V2014, DOI 10.1155/2014/584852
  30. Palazzo AF, 2015, FRONT GENET, V6, DOI 10.3389/fgene.2015.00002
  31. Pewarchuk ME, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20225697
  32. Reshmi G, 2011, GENOMICS, V97, P333, DOI 10.1016/j.ygeno.2011.02.010
  33. Rock LD, 2019, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.01305
  34. Sage AP, 2018, INT J GENOMICS, V2018, DOI 10.1155/2018/6972397
  35. Saliminejad K, 2019, J CELL PHYSIOL, V234, P5451, DOI 10.1002/jcp.27486
  36. Semba S, 2002, CLIN CANCER RES, V8, P3824
  37. Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303
  38. Slattery ML, 2011, GENE CHROMOSOME CANC, V50, P196, DOI 10.1002/gcc.20844
  39. Sung H, 2021, CA-CANCER J CLIN, V71, P209, DOI 10.3322/caac.21660
  40. Szczepanek J, 2022, CELLS-BASEL, V11, DOI 10.3390/cells11061008
  41. Szklarczyk D, 2023, NUCLEIC ACIDS RES, V51, pD638, DOI 10.1093/nar/gkac1000
  42. The Cancer Genome Atlas Research Network, 2012, NATURE, V487, P330, DOI [DOI 10.1038/NATURE11252, 10.1038/nature11252]
  43. Thomas J, 2015, INT J MOL SCI, V16, P28063, DOI 10.3390/ijms161226080
  44. van den Braak RRJC, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-22532-1
  45. Wang Y, 2010, ONCOGENE, V29, P3044, DOI 10.1038/onc.2010.78
  46. Wang Y, 2020, FRONT CELL DEV BIOL, V8, DOI 10.3389/fcell.2020.595605
  47. Wang Y, 2022, MOL BIOTECHNOL, V64, P1388, DOI 10.1007/s12033-022-00515-y
  48. Yang LK, 2019, BIOMED RES INT-UK, V2019, DOI 10.1155/2019/7149296
  49. Zhu XY, 2020, COMPUT MATH METHOD M, V2020, DOI 10.1155/2020/8209504