A semi-automated microscopic image analysis method for scoring Ki-67 nuclear immunostaining

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ASSOC BRAS DIVULG CIENTIFICA
Citação
BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, v.56, article ID e12922, 11p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Nuclear proliferation marker MIB-1 (Ki-67) immunohistochemistry (IHC) is used to examine tumor cell proliferation. However, the diagnostic or prognostic value of the Ki-67 nuclear staining intensity and location, defined as nuclear gradient (NG), has not been assessed. This study examined the potential association between Ki-67 NG and cell cycle phases and its effect on the prognosis of pulmonary typical carcinoid (PTC) tumors. We propose a method for classifying the NG of Ki-67 during the cell cycle and compare the results between PTC, pulmonary adenocarcinoma (PAD), and breast ductal carcinoma (BDC). A literature review and objective analysis of IHC-stained paraffin sections were used to determine the Ki-67 labeling index and composed a stratification of the NG into NG1, NG2, and NG3/4 categories. A semi-automated image analysis protocol was established to determine the Ki-67 NG in PTC, PAD, and BDC. High intraobserver consistency and moderate interobserver agreement were achieved in the determination of Ki-67 NG in tumor specimens. NG1 and NG2 were lower in PTC than in PAD and BDC. Cox multivariate analysis of PTC after adjusting for age and number of metastatic lymph nodes showed that Ki-67 NG1 and NG2 significantly predicted clinical outcomes. The semi-automated method for quantification of Ki-67 nuclear immunostaining proposed in this study could become a valuable diagnostic and prognostic tool in PTC.
Palavras-chave
Pulmonary typical carcinoid tumor, Chromatin gradient, Cell cycle, Image analysis, Prognosis
Referências
  1. Amin MB, 2017, CA-CANCER J CLIN, V67, P93, DOI 10.3322/caac.21388
  2. Balancin ML, 2022, FRONT MED-LAUSANNE, V9, DOI 10.3389/fmed.2022.871202
  3. Bankhead P, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-17204-5
  4. Booth DG, 2014, ELIFE, V3, DOI 10.7554/eLife.01641
  5. BRAUN N, 1988, VIRCHOWS ARCH B, V56, P25, DOI 10.1007/BF02889998
  6. Bridger JM, 1998, CHROMOSOME RES, V6, P13, DOI 10.1023/A:1009210206855
  7. Cuylen S, 2016, NATURE, V535, P308, DOI 10.1038/nature18610
  8. Derks JL, 2021, J THORAC ONCOL, V16, P1632, DOI 10.1016/j.jtho.2021.05.020
  9. Dermawan JKT, 2020, AM J SURG PATHOL, V44, P224, DOI 10.1097/PAS.0000000000001358
  10. Dias EP, 2021, VIRCHOWS ARCH, V479, P121, DOI 10.1007/s00428-020-03010-4
  11. Dowsett M, 2011, JNCI-J NATL CANCER I, V103, P1656, DOI 10.1093/jnci/djr393
  12. Endl E, 2000, EXP CELL RES, V257, P231, DOI 10.1006/excr.2000.4888
  13. Ferro A, 2017, LAB INVEST, V97, P615, DOI 10.1038/labinvest.2017.13
  14. GERDES J, 1991, AM J PATHOL, V138, P867
  15. Goldstraw P, 2016, J THORAC ONCOL, V11, P39, DOI 10.1016/j.jtho.2015.09.009
  16. Kill IR, 1996, J CELL SCI, V109, P1253
  17. Li ZH, 2021, LUNG CANCER, V154, P69, DOI 10.1016/j.lungcan.2021.02.009
  18. Malumbres M, 2001, NAT REV CANCER, V1, P222, DOI 10.1038/35106065
  19. Marchevsky AM, 2018, MODERN PATHOL, V31, P1523, DOI 10.1038/s41379-018-0076-9
  20. Marchiò C, 2017, VIRCHOWS ARCH, V471, P713, DOI 10.1007/s00428-017-2177-0
  21. Matheson TD, 2017, MOL BIOL CELL, V28, P21, DOI 10.1091/mbc.E16-09-0659
  22. Miller I, 2018, CELL REP, V24, P1105, DOI 10.1016/j.celrep.2018.06.110
  23. Mukaka MM, 2012, MALAWI MED J, V24, P69
  24. Nicholson AG, 2022, J THORAC ONCOL, V17, P362, DOI 10.1016/j.jtho.2021.11.003
  25. Norton JT, 2009, J BIOL CHEM, V284, P4090, DOI 10.1074/jbc.M807255200
  26. Pan DH, 2015, MED SCI MONITOR, V21, P882, DOI 10.12659/MSM.892807
  27. Pelosi G, 2014, J THORAC ONCOL, V9, P273, DOI 10.1097/JTO.0000000000000092
  28. Cajal SRY, 2020, J MOL MED, V98, P161, DOI 10.1007/s00109-020-01874-2
  29. Roge R, 2021, APPL IMMUNOHISTO M M, V29, P99, DOI 10.1097/PAI.0000000000000846
  30. Saiwaki T, 2005, EXP CELL RES, V308, P123, DOI 10.1016/j.yexcr.2005.04.010
  31. SASAKI K, 1987, J CELL PHYSIOL, V133, P579, DOI 10.1002/jcp.1041330321
  32. Sobecki M, 2017, CANCER RES, V77, P2722, DOI 10.1158/0008-5472.CAN-16-0707
  33. Starborg M, 1996, J CELL SCI, V109, P143
  34. Sun XM, 2017, MOL CELL BIOL, V37, DOI 10.1128/MCB.00569-16
  35. Swarts DRA, 2017, HISTOPATHOLOGY, V70, P412, DOI 10.1111/his.13096
  36. Tomic Snjezana, 2019, Breast Dis, V38, P73, DOI 10.3233/BD-180341
  37. TOYOSHIMA H, 1994, CELL, V78, P67, DOI 10.1016/0092-8674(94)90573-8
  38. VANDIERENDONCK JH, 1989, CANCER RES, V49, P2999
  39. Yano S, 2020, CANCERS, V12, DOI 10.3390/cancers12092655