Cold Atmospheric Helium Plasma in the Post-COVID-19 Era: A Promising Tool for the Disinfection of Silicone Endotracheal Prostheses

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
SILVA, Diego Morais da
NASCIMENTO, Fellype Do
MILHAN, Noala Vicensoto Moreira
OLIVEIRA, Maria Alcioneia Carvalho de
LEGENDRE, Daniel
AOKI, Fabio Gava
KOSTOV, Konstantin Georgiev
KOGA-ITO, Cristiane Yumi
Citação
MICROORGANISMS, v.12, n.1, article ID 130, 14p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Despite the excellent properties of silicone endotracheal prostheses, their main limitation is the formation of a polymicrobial biofilm on their surfaces. It can cause local inflammation, interfering with the local healing process and leading to further complications in the clinical scenario. The present study evaluated the inhibitory effect of cold atmospheric plasma (CAP) on multispecies biofilms grown on the silicone protheses' surfaces. In addition to silicone characterization before and after CAP exposure, CAP cytotoxicity on immortalized human bronchial epithelium cell line (BEAS-2B) was evaluated. The aging time test reported that CAP could temporarily change the silicone surface wetting characteristics from hydrophilic (80.5 degrees) to highly hydrophilic (<5 degrees). ATR-FTIR showed no significant alterations in the silicone surficial chemical composition after CAP exposure for 5 min. A significant log reduction in viable cells in monospecies biofilms (log CFU/mL) of C. albicans, S. aureus, and P. aeruginosa (0.636, 0.738, and 1.445, respectively) was detected after CAP exposure. Multispecies biofilms exposed to CAP showed significant viability reduction for C. albicans and S. aureus (1.385 and 0.831, respectively). The protocol was not cytotoxic to BEAS-2B. CAP can be a simple and effective method to delay multispecies biofilm formation inside the endotracheal prosthesis.
Palavras-chave
multispecies biofilm, non-thermal plasma, endotracheal tubes, silicone prosthesis, COVID-19
Referências
  1. Alturk A, 2021, ANN MED SURG, V67, DOI 10.1016/j.amsu.2021.102468
  2. Auchincloss HG, 2016, J THORAC DIS, V8, pS160, DOI 10.3978/j.issn.2072-1439.2016.01.86
  3. Bastin O., 2020, PLASMA MED, V10, P71, DOI [DOI 10.1615/PLASMAMED.2020034526, 10.1615/PlasmaMed.2020034526]
  4. Bekeschus S, 2022, CLIN TRANSL MED, V12, DOI 10.1002/ctm2.1022
  5. Beyoglu MA, 2022, INDIAN J SURG, V84, P805, DOI 10.1007/s12262-022-03498-x
  6. Bibas BJ, 2018, J THORAC DIS, V10, DOI 10.21037/jtd.2018.07.80
  7. Bibas BJ, 2014, ANN THORAC SURG, V98, P277, DOI 10.1016/j.athoracsur.2014.03.019
  8. Borges AC, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199832
  9. Borges AC, 2017, CLIN PLASMA MED, V7-8, P9, DOI 10.1016/j.cpme.2017.06.002
  10. Ceresa C, 2019, MOLECULES, V24, DOI 10.3390/molecules24213843
  11. Chen XM, 2022, INT J NANOMED, V17, P1483, DOI 10.2147/IJN.S353071
  12. de Oliveira MAC, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11125441
  13. Decauchy H, 2022, J PHYS D APPL PHYS, V55, DOI 10.1088/1361-6463/ac8c4d
  14. Ding KD, 2021, RSC ADV, V11, P39950, DOI 10.1039/d1ra06260c
  15. Duarte S, 2020, ARCH BIOCHEM BIOPHYS, V693, DOI 10.1016/j.abb.2020.108560
  16. DUMON JF, 1990, CHEST, V97, P328, DOI 10.1378/chest.97.2.328
  17. Ershadi R, 2022, GEN THORAC CARDIOVAS, V70, P303, DOI 10.1007/s11748-021-01747-6
  18. Esteller-Moré E, 2005, EUR ARCH OTO-RHINO-L, V262, P880, DOI 10.1007/s00405-005-0929-y
  19. Fusconi M, 2013, OTOLARYNG HEAD NECK, V149, P269, DOI 10.1177/0194599813488752
  20. International Organization for Standardization, 2009, ISO 10993 52009 EN
  21. Jablonská E, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-85019-6
  22. Kondeti VSSK, 2018, FREE RADICAL BIO MED, V124, P275, DOI 10.1016/j.freeradbiomed.2018.05.083
  23. Kostov KG, 2015, PLASMA PROCESS POLYM, V12, P1383, DOI 10.1002/ppap.201500125
  24. Kostov KG, 2015, IEEE T PLASMA SCI, V43, P770, DOI 10.1109/TPS.2014.2360645
  25. Lee JM, 2012, J LARYNGOL OTOL, V126, P267, DOI 10.1017/S0022215111002969
  26. Liu GL, 2022, MICROCHEM J, V183, DOI 10.1016/j.microc.2022.107973
  27. Martusevich AK, 2022, ANTIOXIDANTS-BASEL, V11, DOI 10.3390/antiox11071262
  28. Mattioli F, 2021, EUR ARCH OTO-RHINO-L, V278, P847, DOI 10.1007/s00405-020-06394-w
  29. Maurice NM, 2018, AM J RESP CELL MOL, V58, P428, DOI 10.1165/rcmb.2017-0321TR
  30. Mazhar K, 2014, OTOLARYNG HEAD NECK, V150, P834, DOI 10.1177/0194599814522765
  31. Miebach L, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12083800
  32. MONTGOMERY WW, 1965, ARCHIV OTOLARYNGOL, V82, P320
  33. Mrochen DM, 2022, FREE RADICAL BIO MED, V191, P105, DOI 10.1016/j.freeradbiomed.2022.08.026
  34. Nouraei S A Reza, 2006, Arch Otolaryngol Head Neck Surg, V132, P1086, DOI 10.1001/archotol.132.10.1086
  35. Piazza C, 2021, EUR ARCH OTO-RHINO-L, V278, P1, DOI 10.1007/s00405-020-06112-6
  36. Raveendra N, 2022, INDIAN J OTOLARYNGOL, V74, P4995, DOI 10.1007/s12070-021-02598-6
  37. Rorris FP, 2023, JTCVS TECHNIQUES, V18, P157, DOI 10.1016/j.xjtc.2023.01.006
  38. Salih S.I., 2018, Proceedings of the IOP Conference Series: Materials Science and Engineering, VVolume 454
  39. Tiernan H, 2020, SPECTROCHIM ACTA A, V241, DOI 10.1016/j.saa.2020.118636