Intraoperative individualization of positive-end-expiratory pressure through electrical impedance tomography or esophageal pressure assessment: a systematic review and meta-analysis of randomized controlled trials

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER HEIDELBERG
Autores
ESPOSITO, Teresa
FREGONESE, Martina
MORETTINI, Giulio
CARBONI, Paloma
TARDIOLI, Cecilia
MESSINA, Antonio
VASCHETTO, Rosanna
CORTE, Francesco Della
VETRUGNO, Luigi
NAVALESI, Paolo
Citação
JOURNAL OF CLINICAL MONITORING AND COMPUTING, v.38, n.1, p.89-100, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose This systematic review of randomized-controlled trials (RCTs) with meta-analyses aimed to compare the effects on intraoperative arterial oxygen tension to inspired oxygen fraction ratio (PaO2/FiO2), exerted by positive end-expiratory pressure (PEEP) individualized trough electrical impedance tomography (EIT) or esophageal pressure (Pes) assessment (intervention) vs. PEEP not tailored on EIT or Pes (control), in patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach.Methods PUBMED (R), EMBASE (R), and Cochrane Controlled Clinical trials register were searched for observational studies and RCTs from inception to the end of August 2022. Inclusion criteria were: RCTs comparing PEEP titrated on EIT/Pes assessment vs. PEEP not individualized on EIT/Pes and reporting intraoperative PaO2/FiO(2). Two authors independently extracted data from the enrolled investigations. Data are reported as mean difference and 95% confidence interval (CI).Results Six RCTs were included for a total of 240 patients undergoing general anesthesia for surgery, of whom 117 subjects in the intervention group and 123 subjects in the control group. The intraoperative mean PaO2/FiO(2) was 69.6 (95%CI 32.-106.4 ) mmHg higher in the intervention group as compared with the control group with 81.4% between-study heterogeneity (p < 0.01). However, at meta-regression, the between-study heterogeneity diminished to 44.96% when data were moderated for body mass index (estimate 3.45, 95%CI 0.78-6.11, p = 0.011).Conclusions In patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach, PEEP personalized by EIT or Pes allowed the achievement of a better intraoperative oxygenation compared to PEEP not individualized through EIT or Pes.
Palavras-chave
Intraoperative oxygenation, Esophageal pressure, Electrical impedance tomography, Intraoperative mechanical ventilation, Pulmonary complications
Referências
  1. Akoumianaki E, 2014, AM J RESP CRIT CARE, V189, P520, DOI 10.1164/rccm.201312-2193CI
  2. Beitler JR, 2019, JAMA-J AM MED ASSOC, P1
  3. Bluth T, 2019, JAMA-J AM MED ASSOC, V321, P2292, DOI 10.1001/jama.2019.7505
  4. Boesing C, 2023, ANESTHESIOLOGY, V139, P249, DOI 10.1097/ALN.0000000000004631
  5. Cammarota G, 2020, ANESTHESIOLOGY
  6. Cammarota G, 2023, ANESTHESIOLOGY, V138, P317, DOI 10.1097/ALN.0000000000004480
  7. Cammarota G, 2021, J CRIT CARE, V61, P125, DOI 10.1016/j.jcrc.2020.10.021
  8. Cammarota G, 2020, RESP CARE, V65, P625, DOI 10.4187/respcare.07238
  9. Cammarota G, 2020, J CLIN MONIT COMPUT, V34, P1223, DOI 10.1007/s10877-019-00436-3
  10. Campos NS, 2022, BRIT J ANAESTH, DOI [10.1002/central/CN-02395425/full, DOI 10.1002/CENTRAL/CN-02395425/FULL]
  11. Chen L, 2022, INTENS CARE MED, V48, P888, DOI 10.1007/s00134-022-06724-y
  12. Chen L, 2020, AM J RESP CRIT CARE, V201, P178, DOI 10.1164/rccm.201902-0334OC
  13. Costa ELV, 2009, INTENS CARE MED, V35, P1132, DOI 10.1007/s00134-009-1447-y
  14. Eronia N, 2017, ANN INTENSIVE CARE, V7, DOI 10.1186/s13613-017-0299-9
  15. Ferrando C, 2018, LANCET RESP MED, V6, P193, DOI 10.1016/S2213-2600(18)30024-9
  16. Fu Y, 2021, MINERVA ANESTESIOL, V87, P655, DOI 10.23736/S0375-9393.20.14951-4
  17. Girrbach F, 2020, BRIT J ANAESTH, V125, P373, DOI 10.1016/j.bja.2020.05.041
  18. Grasso S, 2012, INTENS CARE MED, V38, P395, DOI 10.1007/s00134-012-2490-7
  19. Grieco DL, 2022, BIOMED CENTRAL, V26, P4, DOI [10.1186/s13054-022-04109-7, DOI 10.1186/S13054-022-04109-7]
  20. Guyat G.H., 2011, J CLIN EPIDEMIOL, P64
  21. He X, 2016, ELECT IMPEDANCE TOMO, P95
  22. Hemmes SNT, 2017, EUR J ANAESTH, V34, P492, DOI 10.1097/EJA.0000000000000646
  23. Hemmes SNT, 2014, LANCET, V384, P495, DOI 10.1016/S0140-6736(14)60416-5
  24. Higgins JPT, 2002, STAT MED, V21, P1539, DOI 10.1002/sim.1186
  25. Khalafallah A, 2010, MEDITERR J HEMATOL I, V2, DOI [10.4084/MJHID.2010.005, 10.1136/bmj.l4898]
  26. McKown AC., 2018, CRIT CARE CRITICAL C, V22, P21
  27. Moher D, 2015, SYST REV-LONDON, V4, DOI [10.1186/2046-4053-4-1, 10.1016/j.ijsu.2010.07.299, 10.1136/bmj.b2700, 10.1371/journal.pmed.1000097, 10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2535, 10.1136/bmj.i4086]
  28. Mojoli F, 2016, CRIT CARE, V20, DOI 10.1186/s13054-016-1278-5
  29. Nestler C, 2017, BRIT J ANAESTH, V119, P1194, DOI 10.1093/bja/aex192
  30. Neto AS, 2016, LANCET RESP MED, V4, P272, DOI 10.1016/S2213-2600(16)00057-6
  31. Pereira SM, 2018, ANESTHESIOLOGY, P1
  32. Piriyapatsom A, 2020, EUR J ANAESTH, V37, P1032, DOI 10.1097/EJA.0000000000001204
  33. Severgnini P, 2013, ANESTHESIOLOGY, V118, P1307, DOI 10.1097/ALN.0b013e31829102de
  34. Spinelli E, 2019, BMC ANESTHESIOL, V19, DOI 10.1186/s12871-019-0814-7
  35. Talmor D, 2008, NEW ENGL J MED, V359, P2095, DOI 10.1056/NEJMoa0708638
  36. Wei JJ, 2021, MILITARY MED RES, V8, DOI 10.1186/s40779-021-00331-6
  37. Williams EC, 2019, ANESTHESIOLOGY, V131, P155, DOI 10.1097/ALN.0000000000002731
  38. Yang XB, 2019, JAMA-J AM MED ASSOC, V322, P581, DOI 10.1001/jama.2019.7884
  39. Yoshida T, 2018, AM J RESP CRIT CARE, V197, P1018, DOI 10.1164/rccm.201709-1806OC
  40. Zhao ZQ, 2009, INTENS CARE MED, V35, P1900, DOI 10.1007/s00134-009-1589-y
  41. Zorrilla-Vaca A, 2022, BRIT J ANAESTH, V129, P815, DOI 10.1016/j.bja.2022.07.009