Human interleukin-36γ plays a crucial role in cytokine induction during Sporothrix brasiliensis and S. schenckii infection in keratinocytes and PBMCs

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
Autores
KISCHKEL, Brenda
SANTOS, Jessica C. dos
LOPES-BEZERRA, Leila
JOOSTEN, Leo A. B.
Citação
MICROBIAL PATHOGENESIS, v.188, article ID 106550, 9p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cytokines of the interleukin (IL)-1 superfamily including the different IL-36 isoforms, have been reported as mediators of acute and chronic inflammation in human skin diseases, such as psoriasis. Here, we demonstrated for the first time that Sporothrix schenckii and S. brasiliensis, the fungi that cause subcutaneous infection sporotrichosis, can induce the expression of IL-36 alpha, IL-36 gamma and IL-36Ra in human keratinocytes and primary peripheral blood mononuclear cells (PBMCs). Specifically, IL-36 gamma was differentially expressed by keratinocytes stimulated with Sporothrix yeasts when compared to the commensal microorganism Staphylococcus epidermidis. The exposure of keratinocytes to 24 h or 7-days culture supernatant of PBMCs stimulated with Sporothrix induced higher IL-36 gamma production compared to direct stimulation of keratinocytes with the live fungus. We identified that IL-36 gamma mRNA expression in keratinocytes is increased in the presence of IL-17, TNF, IL-113 and IL-1 alpha and these cytokines may act synergistically to maintain IL-36 gamma production. Lastly, using a cohort of 164 healthy individuals, we showed that individuals carrying variants of the IL36G gene (rs11690399 and rs11683399) exhibit increased IL-36 gamma production as well as increased innate cytokine production after Sporothrix exposure. Importantly, stimulation of PBMCs with recombinant IL-36 gamma increased the production of IL-113 and IL-6, while IL-36Ra were able to decrease the concentration of these cytokines. Our findings contribute to the understanding of the pathogenesis of sporotrichosis and suggest that IL-36 gamma may be involved in maintaining the cytokine loop that leads to tissue destruction by exacerbating the immune response in sporotrichosis. Of high interest, we present the IL-36 signalling pathway as a potential new therapeutic target.
Palavras-chave
Sporotrichosis, Cytokines, Subcutaneous infection, Inflammation
Referências
  1. ANSEL J, 1990, J INVEST DERMATOL, V94, pS101, DOI 10.1111/1523-1747.ep12876053
  2. Braegelmann J, 2018, J EUR ACAD DERMATOL, V32, pE403, DOI 10.1111/jdv.14994
  3. Brown MM, 2020, PLOS PATHOG, V16, DOI 10.1371/journal.ppat.1009026
  4. Buhl AL, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01162
  5. Carrier Y, 2011, J INVEST DERMATOL, V131, P2428, DOI 10.1038/jid.2011.234
  6. Dinarello C, 2010, NAT IMMUNOL, V11, P973, DOI 10.1038/ni1110-973
  7. Dominguez-Andrés J, 2021, STAR PROTOC, V2, DOI 10.1016/j.xpro.2021.100365
  8. Foster AM, 2014, J IMMUNOL, V192, P6053, DOI 10.4049/jimmunol.1301481
  9. Gallo RL, 2011, J INVEST DERMATOL, V131, P1974, DOI 10.1038/jid.2011.182
  10. Gutierrez-Murgas YM, 2016, J NEUROINFLAMM, V13, DOI 10.1186/s12974-016-0741-1
  11. Han YY, 2020, CELL SIGNAL, V75, DOI 10.1016/j.cellsig.2020.109773
  12. Johnston A, 2011, J IMMUNOL, V186, P2613, DOI 10.4049/jimmunol.1003162
  13. Kerstholt M, 2022, CLIN EXP IMMUNOL, V210, P53, DOI 10.1093/cei/uxac073
  14. Lopes-Bezerra LM, 2018, MED MYCOL, V56, pS126, DOI 10.1093/mmy/myx103
  15. Maçaes CO, 2022, J DERMATOL TREAT, V33, P2911, DOI 10.1080/09546634.2022.2089335
  16. Macleod T, 2020, CELL REP, V33, DOI 10.1016/j.celrep.2020.108515
  17. Mercurio L, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0222969
  18. Morgado FN, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-21277-1
  19. Nguyen LT, 2011, TRENDS BIOTECHNOL, V29, P464, DOI 10.1016/j.tibtech.2011.05.001
  20. Queiroz-Telles F, 2019, J FUNGI, V5, DOI 10.3390/jof5010008
  21. Smits JPH, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12041-y
  22. ter Horst R, 2016, CELL, V167, P1111, DOI 10.1016/j.cell.2016.10.018
  23. Towne JE, 2004, J BIOL CHEM, V279, P13677, DOI 10.1074/jbc.M400117200
  24. Tsai YJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0158438
  25. van Eijk M, 2020, MED MYCOL, V58, P1073, DOI 10.1093/mmy/myaa014