Validation of a low-cost continuous renal replacement therapy dialysate fluid controller for experimental purposes

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
INTENSIVE CARE MEDICINE EXPERIMENTAL, v.12, n.1, article ID 9, 10p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundContinuous renal replacement therapy (CRRT) support is crucial for critically ill patients and it is underexplored in specific situations. Experimental CRRT offers a means to gain insights into these scenarios, but the prohibitive cost of CRRT machines limits their accessibility. This study aimed to develop and validate a low-cost and precise dialysate controller for experimental CRRT.ResultsOur results demonstrate a commendable level of precision in affluent flow control, with a robust correlation (R2 = 0.99) for continuous flow and a strong correlation (R2 = 0.95) for intermittent flow. Additionally, we observed acceptable agreement with a bias = 3.4 mL (upper limit 95% = 43.9 mL and lower limit 95% = - 37 mL) for continuous flow and bias = - 20.9 mL (upper limit 95% = 54 mL and lower limit 95% = - 95.7 mL) for intermittent flow, in this way, offering a precise CRRT dose for the subjects. Furthermore, we achieved excellent precision in the cumulative ultrafiltration net (UFnet), with a bias = - 2.8 mL (upper limit 95% = 6.5 mL and lower limit 95% = - 12 mL). These results remained consistent even at low affluent flow rates of 8, 12, and 20 mL/min, which are compatible with CRRT doses of 25-30 mL/kg for medium-sized animals. Moreover, the acceptable precision of our findings persisted when the dialysate controller was subjected to high filter dialysate chamber pressure for an extended duration, up to 797 min.ConclusionsThe low-cost dialysate controller developed and tested in this study offers a precise means of regulating CRRT in experimental settings. Its affordability and accuracy render it a valuable instrument for studying CRRT support in unconventional clinical scenarios, particularly in middle-income countries' experimental ICU laboratories.
Palavras-chave
Acute kidney injury, Continuous renal replacement therapy, Intensive care units, Experimental dialysis, Cost analysis
Referências
  1. analog, Introduction to dialysis machines
  2. [Anonymous], 2014, The R Project for Statistical Computing
  3. arduino cc, UNO R3
  4. arduino cc, What is Arduino?
  5. arduino cc, Arduino-Home
  6. Askenazi D, 2016, PEDIATR NEPHROL, V31, P853, DOI 10.1007/s00467-015-3259-3
  7. Bewick V, 2003, CRIT CARE, V7, P451, DOI 10.1186/cc2401
  8. Biagini Silvana, 2014, Rev. bras. ter. intensiva, V26, P287, DOI 10.5935/0103-507X.20140040
  9. BLAND JM, 1986, LANCET, V1, P307, DOI 10.1016/s0140-6736(86)90837-8
  10. Center for Devices Radiological Health U.S. Food and Drug Administration (FDA), 2020, Quality assurance guidelines for hemodialysis devices
  11. Claure-Del Granado R, 2012, INT J ARTIF ORGANS, V35, P413, DOI 10.5301/ijao.5000041
  12. Cordioli RL, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0185769
  13. Cordioli RL, 2014, INTENS CARE MED EXP, V2, DOI 10.1186/2197-425X-2-13
  14. Coulthard M, 2016, PEDIATR NEPHROL, V31, P1033, DOI 10.1007/s00467-016-3347-z
  15. Coulthard MG, 2014, PEDIATR NEPHROL, V29, P1873, DOI 10.1007/s00467-014-2923-3
  16. Crosier J, 2022, PEDIATR NEPHROL, V37, P3189, DOI 10.1007/s00467-022-05439-y
  17. Almeida JRD, 2010, J TRAUMA, V69, P375, DOI 10.1097/TA.0b013e3181e12b3a
  18. Dolci DT, 2010, EUR J ANAESTH, V27, P67, DOI 10.1097/EJA.0b013e32832bfd7e
  19. Hoyt DB, 1997, AM J KIDNEY DIS, V30, pS102, DOI 10.1016/S0272-6386(97)90550-3
  20. Lambert HJ, 2021, BMJ PAEDIATR OPEN, V5, DOI 10.1136/bmjpo-2021-001224
  21. Lead Fluid, 2022, How to calculate the flow rate of Lead Fluid peristaltic pump
  22. Lombardi R, 2014, NEPHROL DIAL TRANSPL, V29, P1369, DOI 10.1093/ndt/gfu078
  23. Mendes PV, 2022, INTENS CARE MED EXP, V10, DOI 10.1186/s40635-022-00442-x
  24. Mendes Pedro Vitale, 2016, Intensive Care Med Exp, V4, P1, DOI 10.1186/s40635-015-0074-x
  25. Murugan R, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.5418
  26. Nishimi S, 2016, PEDIATR NEPHROL, V31, P493, DOI 10.1007/s00467-015-3233-0
  27. OFSTHUN NJ, 1995, ARTIF ORGANS, V19, P1143, DOI 10.1111/j.1525-1594.1995.tb02276.x
  28. Oliveira RH, 2009, EUR J ANAESTH, V26, P66, DOI 10.1097/EJA.0b013e328319bf5e
  29. Park M, 2008, BRAZ J MED BIOL RES, V41, P648, DOI 10.1590/S0100-879X2008000800002
  30. Park S, 2018, KIDNEY RES CLIN PRAC, V37, P119, DOI 10.23876/j.krcp.2018.37.2.119
  31. Pollard D, 2006, J MULTIVARIATE ANAL, V97, P548, DOI 10.1016/j.jmva.2005.04.002
  32. Pontes De Azevedo LC, 2007, CLINICS, V62, P491, DOI 10.1590/S1807-59322007000400017
  33. Romano TG, 2017, INTENS CARE MED EXP, V5, DOI 10.1186/s40635-017-0141-6
  34. Ronco C, 2014, LANCET, V383, P1807, DOI 10.1016/S0140-6736(14)60799-6
  35. Santhanakrishnan A, 2013, ASAIO J, V59, P294, DOI 10.1097/MAT.0b013e31828ea5e2
  36. Srisawat N, 2021, SEMIN DIALYSIS, V34, P567, DOI 10.1111/sdi.12975
  37. Tezcan MM, 2017, 2017 INT C EL POW SY, DOI [10.1109/SIELMEN.2017.8123321, DOI 10.1109/SIELMEN.2017.8123321]
  38. Wang Y, 2017, BIOMED ENG ONLINE, V16, DOI 10.1186/s12938-017-0387-y