Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer's disease

Nenhuma Miniatura disponível
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
JOHNSON, Erik C. B.
BIAN, Shijia
HAQUE, Rafi U.
CARTER, E. Kathleen
WATSON, Caroline M.
GORDON, Brian A.
PING, Lingyan
DUONG, Duc M.
EPSTEIN, Michael P.
MCDADE, Eric
Citação
NATURE MEDICINE, v.29, n.8, p.1979-+, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Alzheimer's disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes-aggregation of the amyloid-& beta; (A & beta;) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)-are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of A & beta; plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with A & beta; plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than A & beta; and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with A & beta; and tau. Proteomic analysis of cerebrospinal fluid from individuals with autosomal dominant Alzheimer's disease reveals how this complex and chronic disease evolves over many decades.
Palavras-chave
Referências
  1. Arboleda-Velasquez JF, 2019, NAT MED, V25, P1680, DOI 10.1038/s41591-019-0611-3
  2. Bai B, 2020, NEURON, V105, P975, DOI 10.1016/j.neuron.2019.12.015
  3. Bandos AI, 2005, STAT MED, V24, P2873, DOI 10.1002/sim.2149
  4. Barthelemy NR, 2020, NAT MED, V26, P398, DOI 10.1038/s41591-020-0781-z
  5. Bateman RJ, 2012, NEW ENGL J MED, V367, P795, DOI 10.1056/NEJMoa1202753
  6. Bateman RJ, 2011, ALZHEIMERS RES THER, V3, DOI 10.1186/alzrt59
  7. Boerwinkle AH, 2021, NEUROLOGY, V97, pE76, DOI 10.1212/WNL.0000000000012123
  8. Bridel C, 2019, JAMA NEUROL, V76, P1035, DOI 10.1001/jamaneurol.2019.1534
  9. Buchhave P, 2012, ARCH GEN PSYCHIAT, V69, P98, DOI 10.1001/archgenpsychiatry.2011.155
  10. Bürkner PC, 2018, R J, V10, P395
  11. Bürkner PC, 2017, J STAT SOFTW, V80, P1, DOI 10.18637/jss.v080.i01
  12. Campbell MR, 2021, ALZH DEMENT-DADM, V13, DOI 10.1002/dad2.12190
  13. Cantor H, 2009, NAT REV IMMUNOL, V9, P137, DOI 10.1038/nri2460
  14. Carr SA, 2014, MOL CELL PROTEOMICS, V13, P907, DOI 10.1074/mcp.M113.036095
  15. Chen WL, 2015, REV NEUROSCIENCE, V26, P129, DOI 10.1515/revneuro-2014-0051
  16. Connolly K, 2023, ALZHEIMERS DEMENT, V19, P9, DOI 10.1002/alz.12612
  17. Craig-Schapiro R, 2010, BIOL PSYCHIAT, V68, P903, DOI 10.1016/j.biopsych.2010.08.025
  18. Dammer EB, 2022, ALZHEIMERS RES THER, V14, DOI 10.1186/s13195-022-01113-5
  19. Dayon L, 2018, ALZHEIMERS RES THER, V10, DOI 10.1186/s13195-018-0397-4
  20. Dopico-López A, 2021, TRANSL RES, V230, P68, DOI 10.1016/j.trsl.2020.10.004
  21. Esteve P, 2019, NAT NEUROSCI, V22, P1258, DOI 10.1038/s41593-019-0432-1
  22. Fagan AM, 2009, EMBO MOL MED, V1, P371, DOI 10.1002/emmm.200900048
  23. Fan JS, 2018, NEUROPSYCH DIS TREAT, V14, P495, DOI 10.2147/NDT.S157099
  24. Fernandez S, 2021, J ALZHEIMERS DIS REP, V5, P111, DOI 10.3233/ADR-200246
  25. FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
  26. Gillette MA, 2013, NAT METHODS, V10, P28, DOI 10.1038/nmeth.2309
  27. Gordon BA, 2018, LANCET NEUROL, V17, P241, DOI 10.1016/S1474-4422(18)30028-0
  28. Higginbotham L, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aaz9360
  29. Hondius DC, 2018, ACTA NEUROPATHOL COM, V6, DOI 10.1186/s40478-018-0540-2
  30. Hynes R. O., 2012, Cold Spring Harb Perspect Biol., V4, pa004903, DOI [DOI 10.1101/CSHPERSPECT.A004903, 10.1101/cshperspect.a004903]
  31. Jack CR, 2018, ALZHEIMERS DEMENT, V14, P535, DOI 10.1016/j.jalz.2018.02.018
  32. Janelidze S, 2016, ANN CLIN TRANSL NEUR, V3, P154, DOI 10.1002/acn3.274
  33. Johnson ECB, 2022, NAT NEUROSCI, V25, P213, DOI 10.1038/s41593-021-00999-y
  34. Johnson ECB, 2020, NAT MED, V26, P769, DOI 10.1038/s41591-020-0815-6
  35. Karch Celeste M, 2015, Biol Psychiatry, V77, P43, DOI 10.1016/j.biopsych.2014.05.006
  36. Karikari TK, 2021, MOL PSYCHIATR, V26, P429, DOI 10.1038/s41380-020-00923-z
  37. KLAR A, 1992, CELL, V69, P95, DOI 10.1016/0092-8674(92)90121-R
  38. Kremer DM, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-24859-2
  39. Leuzy A, 2022, EMBO MOL MED, V14, DOI 10.15252/emmm.202114408
  40. Li Y, 2022, NEUROLOGY, V98, pE688, DOI 10.1212/WNL.0000000000013211
  41. Magistretti PJ, 2015, NEURON, V86, P883, DOI 10.1016/j.neuron.2015.03.035
  42. Mawuenyega KG, 2010, SCIENCE, V330, P1774, DOI 10.1126/science.1197623
  43. McKay NS, 2023, NAT NEUROSCI, V26, P1449, DOI 10.1038/s41593-023-01359-8
  44. Morenas-Rodríguez E, 2022, LANCET NEUROL, V21, P329, DOI 10.1016/S1474-4422(22)00027-8
  45. MORRIS JC, 1993, NEUROLOGY, V43, P2412, DOI 10.1212/WNL.43.11.2412-a
  46. Morris JC, 2022, BRAIN, V145, P3594, DOI 10.1093/brain/awac181
  47. Neff RA, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abb5398
  48. Nelson PT, 2019, BRAIN, V142, P1503, DOI 10.1093/brain/awz099
  49. Newington JT, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019191
  50. Nichols E., 2022, LANCET PUBLIC HEALTH, V7, pe105, DOI [DOI 10.1016/S2468-2667(21)00249-8, 10.1016/S2468-2667(21)00249-8]
  51. Ossenkoppele R, 2022, LANCET NEUROL, V21, P726, DOI 10.1016/S1474-4422(22)00168-5
  52. Potter R, 2013, SCI TRANSL MED, V5, DOI 10.1126/scitranslmed.3005615
  53. Preische O, 2019, NAT MED, V25, P277, DOI 10.1038/s41591-018-0304-3
  54. Rajkumar K, 2016, CELL BIOCHEM FUNCT, V34, P394, DOI 10.1002/cbf.3198
  55. Raulin AC, 2022, MOL NEURODEGENER, V17, DOI 10.1186/s13024-022-00574-4
  56. Reiman EM, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14279-8
  57. Ringman JM, 2016, J NEUROPATH EXP NEUR, V75, P284, DOI 10.1093/jnen/nlv028
  58. Rosmus DD, 2022, BIOMEDICINES, V10, DOI 10.3390/biomedicines10040840
  59. Rother C, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-34538-5
  60. Ryman Davis C, 2014, Neurology, V83, P253, DOI 10.1212/WNL.0000000000000596
  61. Salvadó G, 2022, EUR J NUCL MED MOL I, V49, P4567, DOI 10.1007/s00259-022-05897-4
  62. Schultz SA, 2020, NEUROBIOL DIS, V142, DOI 10.1016/j.nbd.2020.104960
  63. Sherva Richard, 2014, Alzheimers Dement, V10, P45, DOI 10.1016/j.jalz.2013.01.008
  64. Shippy DC, 2020, FRONT CELL NEUROSCI, V14, DOI 10.3389/fncel.2020.563446
  65. Spellman DS, 2015, PROTEOM CLIN APPL, V9, P715, DOI 10.1002/prca.201400178
  66. Strain JF, 2022, NEUROBIOL DIS, V168, DOI 10.1016/j.nbd.2022.105714
  67. Suárez-Calvet M, 2020, EMBO MOL MED, V12, DOI 10.15252/emmm.202012921
  68. Suárez-Calvet M, 2018, EMBO MOL MED, V10, DOI [10.15252/emmm.2018097121, 10.15252/emmm.201809712]
  69. Tchaikovski V, 2008, ARTERIOSCL THROM VAS, V28, P322, DOI 10.1161/ATVBAHA.107.158022
  70. Townley RA, 2018, NEUROLOGY, V90, P118, DOI 10.1212/WNL.0000000000004840
  71. Ulland TK, 2017, CELL, V170, P649, DOI 10.1016/j.cell.2017.07.023
  72. Wan YW, 2020, CELL REP, V32, DOI 10.1016/j.celrep.2020.107908
  73. Watson CM, 2023, SCI DATA, V10, DOI 10.1038/s41597-023-02158-3
  74. Wisniewski T, 1996, NEUROREPORT, V7, P667, DOI 10.1097/00001756-199601310-00068
  75. Xiang XY, 2021, SCI TRANSL MED, V13, DOI 10.1126/scitranslmed.abe5640
  76. Zhou MT, 2020, CLIN PROTEOM, V17, DOI 10.1186/s12014-020-09285-8