Infrared Imaging of the Brain-Eyelid Thermal Tunnel: A Promising Method for Measuring Body Temperature in Afebrile Children

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MULTIDISCIPLINARY DIGITAL PUBLISHING INSTITUTE (MDPI)
Autores
MENECK, F. De
SANTANA, V.
BRIOSCHI, G. C.
HADDAD, D. S.
NEVES, E. B.
FRANCO, M. D. C.
Citação
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, v.20, n.19, article ID 6867, p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
(1) Infrared thermography of the inner canthus of the eye has emerged as a promising tool for temperature screening and fever diagnosis. Its non-invasive nature lends itself well to mass screening in diverse settings such as schools, public transport, and healthcare facilities. Swift and accurate temperature assessment plays a pivotal role in the early identification of potential fever cases, facilitating timely isolation, testing, and treatment, thereby mitigating the risk of disease transmission. Nonetheless, the reliability of this approach in the pediatric population, especially when compared to conventional thermometry methods, remains unexplored. This preliminary study aimed to evaluate the concordance between the temperature of the inner canthus of the eye (Tic,eye), referred to as the brain-eyelid thermal tunnel (BTT°), with axillary and tympanic methods in afebrile children. (2) Methods: A cohort of 36 children, matched in a 1:1 ratio for gender and age, underwent comprehensive assessments encompassing anthropometric data, blood pressure evaluations, axillary (Tax) and tympanic (Tty) temperature measurements, as well as BTT° infrared thermography. (3) Results: The findings revealed a high level of concordance among the tympanic, axillary, and BTT° measurement methods. Bland–Altman plots showed that the bias was minimal, and no statistically significant differences were observed when comparing BTT° with axillary (p = 0.136) and tympanic (p = 0.268) measurements. Passing–Bablok regression scatter plots further confirmed the agreement, aligning the fitted regression line closely with the identity line for both axillary versus BTT° and tympanic (Tty) versus BTT° comparisons. (4) Conclusions: This study holds significant implications for public health, especially in the context of infectious disease outbreaks such as COVID-19. BTT° infrared thermography of the inner canthus of the eye (Tic,eye) reliably measures body temperature in afebrile children in controlled settings; nevertheless, its practical application necessitates the adaptation of biothermodynamic parameters to accommodate diverse environmental conditions.
Palavras-chave
body temperature, brain, central nervous system, diagnosis, diagnostic techniques and procedures, investigative techniques, pediatrics, thermography, thermometry
Referências
  1. Geneva I.I., Cuzzo B., Fazili T., Javaid W., Normal Body Temperature: A Systematic Review, Open Forum Infect. Dis, 6, (2019)
  2. Kelly G., Body temperature variability (Part 1): A review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging, Altern. Med. Rev, 11, pp. 278-293, (2006)
  3. Kelly G.S., Body temperature variability (Part 2), masking influences of body temperature variability and a review of body temperature variability in disease, Altern. Med. Rev, 12, pp. 49-62, (2007)
  4. Ng K.G., Wong S.T., Lim S.M., Goh Z., Evaluation of the Cadi ThermoSENSOR wireless skin-contact thermometer against ear and axillary temperatures in children, J. Pediatr. Nurs, 25, pp. 176-186, (2010)
  5. Oguz F., Yildiz I., Varkal M.A., Hizli Z., Toprak S., Kaymakci K., Saygili S.K., Kilic A., Unuvar E., Axillary and Tympanic Temperature Measurement in Children and Normal Values for Ages, Pediatr. Emerg. Care, 34, pp. 169-173, (2018)
  6. Morrison S.F., Nakamura K., Central Mechanisms for Thermoregulation, Annu. Rev. Physiol, 81, pp. 285-308, (2019)
  7. Abreu M.M., Banack T.M., Haddadin A.S., Silverman T.J., Dai F., Elefteriades J.A., Ostroff R., Bergeron M.F., Silverman D.G., Brain/core Discordance due to Neuronal Activity Identified by Noninvasive Brain Temperature Measurement via Brain-eyelid Thermal Tunnels, Authorea Prepr, (2020)
  8. Brioschi M.L., Dalmaso Neto C., Toledo M., Neves E.B., Vargas J.V.C., Teixeira M.J., Infrared image method for possible COVID-19 detection through febrile and subfebrile people screening, J. Therm. Biol, 112, (2023)
  9. Childs C., Zu M., Wai A., Tsai Y., Wu S., Li W., Infra-red Thermal Imaging of the Inner Canthus: Correlates with the Temperature of the Injured Human Brain, Engineering, 4, pp. 53-56, (2012)
  10. Abreu M.M., Haddadin A., Hott M., Assis A., Silverman D.G., Consistency of brain temperature tunnel measurements in different environmental temperature. San Diego, CA, Am. Soc. Anesthesiol, (2010)
  11. Wagner J., Abreu M.M., Piepmeier J., Silverman D., Ruskin K., Detection of brain cooling during craniotomy with a surface temperature monitor. San Diego, CA, Am. Soc. Anesthesiol, (2010)
  12. Abreu M.M., Smith R.L., Banack T.M., Clebone A.L., Haddadin A.S., Silverman T.J., Dai F., Silverman D.G., Biophysical Basis of Thermometry Limitations to Control COVID-19 are Overcome at Transmissive Skin Overlying Brain-eyelid Thermal Tunnels, Authorea Prepr, (2020)
  13. Ring E.F., McEvoy H., Jung A., Zuber J., Machin G., New standards for devices used for the measurement of human body temperature, J. Med. Eng. Technol, 34, pp. 249-253, (2010)
  14. Haddadin A., Abreu M., Silverman T., Amalu W., Silverman D., Infrared thermographic analysis of temperature on the face, forehead neck, and supero-medial orbit. San Diego, CA, Am. Soc. Anesthesiol, (2009)
  15. Teunissen L.P., Daanen H.A., Infrared thermal imaging of the inner canthus of the eye as an estimator of body core temperature, J. Med. Eng. Technol, 35, pp. 134-138, (2011)
  16. Ring E.F., Ammer K., Infrared thermal imaging in medicine, Physiol. Meas, 33, pp. R33-R46, (2012)
  17. Vardasca R., Marques A.R., Diz J., Seixas A., Mendes J., Ring E.F.J., The influence of angles and distance on assessing inner-canthi of the eye skin temperature, Thermol. Int, 27, pp. 130-135, (2017)
  18. Lin L.I., A concordance correlation coefficient to evaluate reproducibility, Biometrics, 45, pp. 255-268, (1989)
  19. Batra P., Saha A., Faridi M.M., Thermometry in children, J. Emerg. Trauma Shock, 5, pp. 246-249, (2012)
  20. Greenes D.S., Fleisher G.R., Accuracy of a noninvasive temporal artery thermometer for use in infants, Arch. Pediatr. Adolesc. Med, 155, pp. 376-381, (2001)
  21. Batra P., Goyal S., Comparison of rectal, axillary, tympanic, and temporal artery thermometry in the pediatric emergency room, Pediatr. Emerg. Care, 29, pp. 63-66, (2013)
  22. Gasim G.I., Musa I.R., Abdien M.T., Adam I., Accuracy of tympanic temperature measurement using an infrared tympanic membrane thermometer, BMC Res. Notes, 6, (2013)
  23. Pontious S.L., Kennedy A., Chung K.L., Burroughs T.E., Libby L.J., Vogel D.W., Accuracy and reliability of temperature measurement in the emergency department by instrument and site in children, Pediatr. Nurs, 20, pp. 58-63, (1994)
  24. Devrim I., Kara A., Ceyhan M., Tezer H., Uludag A.K., Cengiz A.B., Yigitkanl I., Secmeer G., Measurement accuracy of fever by tympanic and axillary thermometry, Pediatr. Emerg. Care, 23, pp. 16-19, (2007)
  25. Craig J.V., Lancaster G.A., Williamson P.R., Smyth R.L., Temperature measured at the axilla compared with rectum in children and young people: Systematic review, BMJ, 320, pp. 1174-1178, (2000)
  26. Craig J.V., Lancaster G.A., Taylor S., Williamson P.R., Smyth R.L., Infrared ear thermometry compared with rectal thermometry in children: A systematic review, Lancet, 360, pp. 603-609, (2002)
  27. Dodd S.R., Lancaster G.A., Craig J.V., Smyth R.L., Williamson P.R., In a systematic review, infrared ear thermometry for fever diagnosis in children finds poor sensitivity, J. Clin. Epidemiol, 59, pp. 354-357, (2006)
  28. Selent M.U., Molinari N.M., Baxter A., Nguyen A.V., Siegelson H., Brown C.M., Plummer A., Higgins A., Podolsky S., Spandorfer P., Et al., Mass screening for fever in children: A comparison of 3 infrared thermal detection systems, Pediatr. Emerg. Care, 29, pp. 305-313, (2013)
  29. Kolosovas-Machuca E.S., Gonzalez F.J., Distribution of skin temperature in Mexican children, Skin Res. Technol, 17, pp. 326-331, (2011)
  30. Ortiz-Dosal A., Kolosovas-Machuca E.S., Rivera-Vega R., Simon J., Gonzalez F.J., Use of infrared thermography in children with shock: A case series, SAGE Open Med. Case Rep, 2, (2014)
  31. Abreu M.M., Smith R.L., Ruskin K., Da Silva A.F., Haddadin A.S., Bergeron M.F., Banack T.M., Silverman D.G., Previously unseen brain-eyelid thermal tunnel reveals biological waveguide and transorbital thermophysical pathway to the brain, Authorea Prepr, (2020)
  32. Abreu M.M., Patent and Trademark Office, U.S. Patent, (2002)