Pressure-support compared with pressure-controlled ventilation mitigates lung and brain injury in experimental acute ischemic stroke in rats

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
SILVA, Adriana L. da
BESSA, Camila M.
ROCHA, Nazareth N.
CARVALHO, Eduardo B.
MAGALHAES, Raquel F.
ROBBA, Chiara
PELOSI, Paolo
SAMARY, Cynthia S.
ROCCO, Patricia R. M.
Citação
INTENSIVE CARE MEDICINE EXPERIMENTAL, v.11, n.1, article ID 93, 12p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background We aimed to evaluate the pulmonary and cerebral effects of low-tidal volume ventilation in pressure-support (PSV) and pressure-controlled (PCV) modes at two PEEP levels in acute ischemic stroke (AIS).Methods In this randomized experimental study, AIS was induced by thermocoagulation in 30 healthy male Wistar rats. After 24 h, AIS animals were randomly assigned to PSV or PCV with V-T = 6 mL/kg and PEEP = 2 cmH(2)O (PSV-PEEP2 and PCV-PEEP2) or PEEP = 5 cmH(2)O (PSV-PEEP5 and PCV-PEEP5) for 2 h. Lung mechanics, arterial blood gases, and echocardiography were evaluated before and after the experiment. Lungs and brain tissue were removed for histologic and molecular biology analysis. The primary endpoint was diffuse alveolar damage (DAD) score; secondary endpoints included brain histology and brain and lung molecular biology markers.Results In lungs, DAD was lower with PSV-PEEP5 than PCV-PEEP5 (p < 0.001); interleukin (IL)-1 beta was lower with PSV-PEEP2 than PCV-PEEP2 (p = 0.016) and PSV-PEEP5 than PCV-PEEP5 (p = 0.046); zonula occludens-1 (ZO-1) was lower in PCV-PEEP5 than PCV-PEEP2 (p = 0.042). In brain, necrosis, hemorrhage, neuropil edema, and CD45 + microglia were lower in PSV than PCV animals at PEEP = 2 cmH(2)O (p = 0.036, p = 0.025, p = 0.018, p = 0.011, respectively) and PEEP = 5 cmH(2)O (p = 0.003, p = 0.003, p = 0.007, p = 0.003, respectively); IL-1 beta was lower while ZO-1 was higher in PSV-PEEP2 than PCV-PEEP2 (p = 0.009, p = 0.007, respectively), suggesting blood-brain barrier integrity. Claudin-5 was higher in PSV-PEEP2 than PSV-PEEP5 (p = 0.036).Conclusion In experimental AIS, PSV compared with PCV reduced lung and brain injury. Lung ZO-1 reduced in PCV with PEEP = 2 versus PEEP = 5 cmH(2)O, while brain claudin-5 increased in PSV with PEEP = 2 versus PEEP = 5 cmH(2)O.
Palavras-chave
Acute ischemic stroke, Mechanical ventilation, Lung injury, Brain injury
Referências
  1. Asehnoune K, 2017, INTENS CARE MED, V43, P957, DOI 10.1007/s00134-017-4764-6
  2. Battaglini D, 2021, BEST PRAC RES-CL ANA, V35, P207, DOI 10.1016/j.bpa.2020.09.001
  3. Brandenburg S, 2017, IMMUNOL RES, V65, P757, DOI 10.1007/s12026-017-8915-1
  4. Bruni A, 2017, J THORAC DIS, V9, P3483, DOI 10.21037/jtd.2017.08.149
  5. Cammarota G, 2021, J CLIN MONIT COMPUT, V35, P627, DOI 10.1007/s10877-020-00523-w
  6. Chen ZZ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092133
  7. Clayton JA, 2014, NATURE, V509, P282, DOI 10.1038/509282a
  8. da Silva H, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0200135
  9. de Carvalho EB, 2022, PHYSIOL REP, V10, DOI 10.14814/phy2.15429
  10. du Sert NP, 2020, PLOS BIOL, V18, DOI 10.1371/journal.pbio.3000411
  11. Fan JL, 2022, J CEREBR BLOOD F MET, V42, P454, DOI 10.1177/0271678X211033732
  12. Fan TH, 2021, LUNG, V199, P603, DOI 10.1007/s00408-021-00491-1
  13. Fulop GA, 2019, GEROSCIENCE, V41, P575, DOI 10.1007/s11357-019-00110-1
  14. Goligher EC, 2020, AM J RESP CRIT CARE, V202, P950, DOI 10.1164/rccm.202003-0655CP
  15. González-López A, 2019, CRIT CARE MED, V47, pE911, DOI 10.1097/CCM.0000000000003977
  16. González-López A, 2013, AM J RESP CRIT CARE, V188, P693, DOI 10.1164/rccm.201304-0691OC
  17. Greenberg SM, 2022, STROKE, V53, pE282, DOI 10.1161/STR.0000000000000407
  18. Guo SR, 2022, FRONT AGING NEUROSCI, V14, DOI 10.3389/fnagi.2022.815347
  19. Ingelse SA, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0210172
  20. Ingenito EP, 2001, AM J RESP CELL MOL, V25, P35, DOI 10.1165/ajrcmb.25.1.4021
  21. Jonas P, 2014, FRONT NEURAL CIRCUIT, V8, DOI 10.3389/fncir.2014.00107
  22. Kubo K, 1998, RESP PHYSIOL, V111, P301, DOI 10.1016/S0034-5687(98)00006-1
  23. Kubo K, 1996, THORAX, V51, P312, DOI 10.1136/thx.51.3.312
  24. Kuebler Wolfgang M, 2002, Curr Opin Anaesthesiol, V15, P57, DOI 10.1097/00001503-200202000-00009
  25. Lang RM, 2015, J AM SOC ECHOCARDIOG, V28, P1, DOI 10.1016/j.echo.2014.10.003
  26. López-Alonso I, 2019, INTENS CARE MED EXP, V7, DOI 10.1186/s40635-019-0222-9
  27. Lun MP, 2015, NAT REV NEUROSCI, V16, P445, DOI 10.1038/nrn3921
  28. Magder S, 2018, ANN TRANSL MED, V6, DOI 10.21037/atm.2018.06.19
  29. Mahmood SS, 2018, ANN TRANSL MED, V6, DOI 10.21037/atm.2018.04.29
  30. Mendes RD, 2020, FRONT NEUROL, V11, DOI 10.3389/fneur.2020.01001
  31. MORTOLA JP, 1983, J APPL PHYSIOL, V55, P250, DOI 10.1152/jappl.1983.55.1.250
  32. Nakos G, 1997, AM J RESP CRIT CARE, V155, P945, DOI 10.1164/ajrccm.155.3.9117030
  33. Nemer SN, 2015, J CRIT CARE, V30, P1263, DOI 10.1016/j.jcrc.2015.07.019
  34. Neupane K, 2023, Physiology, Transpulmonary Pressure
  35. Pelosi P, 2011, CRIT CARE, V15, DOI 10.1186/cc10259
  36. Picetti E, 2020, CRIT CARE, V24, DOI 10.1186/s13054-020-02875-w
  37. Pinto EF, 2020, ANESTHESIOLOGY, V132, P307, DOI 10.1097/ALN.0000000000003060
  38. Protti A, 2016, CRIT CARE MED, V44, pE838, DOI 10.1097/CCM.0000000000001718
  39. Robba C, 2022, CRIT CARE, V26, DOI 10.1186/s13054-022-03903-7
  40. Robba C, 2021, INTENS CARE MED, V47, P1347, DOI 10.1007/s00134-021-06486-z
  41. Robba C, 2020, INTENS CARE MED, V46, P2397, DOI 10.1007/s00134-020-06283-0
  42. Rocha NN, 2021, RESP RES, V22, DOI 10.1186/s12931-021-01811-y
  43. Samary CS, 2018, CRIT CARE, V22, DOI 10.1186/s13054-018-2164-0
  44. Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73
  45. Scoutt LM, 2019, RADIOL CLIN N AM, V57, P501, DOI 10.1016/j.rcl.2019.01.008
  46. Silva PL, 2022, SEMIN RESP CRIT CARE, V43, P321, DOI 10.1055/s-0042-1744447
  47. Silva PL, 2018, ANN TRANSL MED, V6, DOI 10.21037/atm.2018.10.03
  48. Slama M, 2003, AM J PHYSIOL-HEART C, V284, pH691, DOI 10.1152/ajpheart.00653.2002
  49. Sousa GC, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-02608-1
  50. Tejerina EE, 2021, CRIT CARE MED, V49, P1095, DOI 10.1097/CCM.0000000000004921
  51. Thammanomai A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053934
  52. Thayabaranathan T, 2022, INT J STROKE, V17, P946, DOI 10.1177/17474930221123175
  53. Tsao CW, 2022, CIRCULATION, V145, pE153, DOI 10.1161/CIR.0000000000001052
  54. Watson NA, 2000, EUR J ANAESTH, V17, P152, DOI 10.1046/j.1365-2346.2000.00640.x
  55. WATSON PM, 1991, NEUROSCI LETT, V129, P6, DOI 10.1016/0304-3940(91)90708-2