<i>OPRM1</i> and<i> BDNF</i> polymorphisms associated with a compensatory neurophysiologic signature in knee osteoarthritis patients

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Citação
NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, v.53, n.6, article ID 102917, 9p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: The present study investigated the relationship between three genetic polymor-phisms of OPRM1 (rs1799971 -A118G and rs1799972 -C17T) and BDNF (rs6265 -C196T) and EEG-measured brain oscillations in Knee Osteoarthritis (KOA) patients.Materials and Methods: We performed a cross-sectional analysis of a cohort study (DEFINE cohort), KOA arm, with 66 patients, considering demographic (age, sex, and education), clinical (pain intensity and duration), OPRM1 (rs1799971 -A118G and rs1799972 -C17T) and BDNF (rs6265 -C196T) genotypes, and electrophysiological measures. Brain oscillations relative power from Delta, Theta, Alpha, Low Alpha, High Alpha, Beta, Low Beta and High Beta oscillations were measured during resting state EEG. Multivariate regression models were used to explore the main brain oscillation predictors of the three genetic polymorphisms.Results: Our findings demonstrate that Theta and Low Beta oscillations are associated with the variant allele of OPRM1-rs1799971 (A118G) on left frontal and left central regions, respectively, while Alpha brain oscillation is associated with variant genotypes (CT/TT) of BDNF-rs6265 on frontal (decrease of oscillation power) and left central (increase of oscillation power) regions. No significant model was found for OPRM1-rs1799972 (C17T) in addition to the inclusion of pain intensity as a significant predictor of this last model.Conclusion: One potential interpretation for these findings is that polymorphisms of OPRM1 that is involved with endogenous pain control lead to increased compensatory oscillatory mechanisms, characterized by increased theta oscillations. Along the same line, polymorphisms of the BDNF lead to decreased alpha oscillations in the frontal area, likely also reflecting the disruption of resting states to also compensate for the increased injury associated with knee OA. It is possible that these polymorphisms require additional brain adaption to the knee OA related injury.(c) 2023 Published by Elsevier Masson SAS.
Palavras-chave
Genetic polymorphism, BDNF, OPRM1, EEG, Knee osteoarthritis, Rehabilitation
Referências
  1. [Anonymous], 1964, Human experimentation: code of ethics of W.M.A. BMJ, V2, P177
  2. Bachmann V, 2012, SLEEP, V35, P335, DOI 10.5665/sleep.1690
  3. Barbosa SP, 2021, Princ Pract Clin Res J, V7, P50
  4. Biau DJ, 2008, CLIN ORTHOP RELAT R, V466, P2282, DOI 10.1007/s11999-008-0346-9
  5. Black IB, 1999, J NEUROBIOL, V41, P108, DOI 10.1002/(SICI)1097-4695(199910)41:1<108::AID-NEU14>3.0.CO;2-U
  6. Bursac Z, 2008, SOURCE CODE BIOL MED, V3, DOI 10.1186/1751-0473-3-17
  7. Buzsáki G, 2004, SCIENCE, V304, P1926, DOI 10.1126/science.1099745
  8. Cai XY, 2017, J HEADACHE PAIN, V18, DOI 10.1186/s10194-017-0725-2
  9. Cavanagh JF, 2014, TRENDS COGN SCI, V18, P414, DOI 10.1016/j.tics.2014.04.012
  10. Cavanagh JF, 2009, J NEUROSCI, V29, P98, DOI 10.1523/JNEUROSCI.4137-08.2009
  11. Conner JM, 1997, J NEUROSCI, V17, P2295
  12. Crist RC, 2014, PHARMACOL BIOCHEM BE, V123, P25, DOI 10.1016/j.pbb.2013.10.018
  13. Crystal HA, 2012, ADDICT BIOL, V17, P181, DOI 10.1111/j.1369-1600.2010.00265.x
  14. Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009
  15. Delorme A, 2007, NEUROIMAGE, V34, P1443, DOI 10.1016/j.neuroimage.2006.11.004
  16. Devlin P, 2021, BMC GENOMICS, V22, DOI 10.1186/s12864-021-07525-1
  17. Egan MF, 2003, CELL, V112, P257, DOI 10.1016/S0092-8674(03)00035-7
  18. Ellerbrock I, 2021, EUR J PAIN, V25, P398, DOI 10.1002/ejp.1680
  19. Gatt JM, 2008, BIOL PSYCHOL, V79, P275, DOI 10.1016/j.biopsycho.2008.07.004
  20. Gonçalves FD, 2023, INT J CLIN HLTH PSYC, V23, DOI 10.1016/j.ijchp.2022.100330
  21. Gonzalez D, 2013, Eur Psychiatry, V28, P1
  22. Huang R, 2007, J MED GENET, V44, DOI 10.1136/jmg.2006.044883
  23. Hynd MR, 2004, NEUROCHEM INT, V45, P583, DOI 10.1016/j.neuint.2004.03.007
  24. Khalil H, 2017, BIOL RES NURS, V19, P170, DOI 10.1177/1099800416680474
  25. Kim JS, 2020, FRONT PSYCHIATRY, V11, DOI 10.3389/fpsyt.2020.00124
  26. Kim KM, 2019, J BEHAV ADDICT, V8, P463, DOI 10.1556/2006.8.2019.41
  27. Klimesch W, 1999, BRAIN RES REV, V29, P169, DOI 10.1016/S0165-0173(98)00056-3
  28. Lee JY, 2017, J BEHAV ADDICT, V6, P387, DOI 10.1556/2006.6.2017.055
  29. Levy MJF, 2018, PSYCHOPHARMACOLOGY, V235, P2195, DOI 10.1007/s00213-018-4950-4
  30. Lie MU, 2021, SCAND J PAIN, V21, P163, DOI 10.1515/sjpain-2020-0091
  31. Liu TT, 2022, BIOL RES NURS, V24, P226, DOI 10.1177/10998004211065151
  32. Lötsch J, 2002, PHARMACOGENETICS, V12, P3, DOI 10.1097/00008571-200201000-00002
  33. Malver LP, 2014, BRIT J CLIN PHARMACO, V77, P72, DOI 10.1111/bcp.12137
  34. Mang CS, 2013, PHYS THER, V93, P1707, DOI 10.2522/ptj.20130053
  35. Marques LM, 2022, NEUROPHYSIOL CLIN, V52, P413, DOI 10.1016/j.neucli.2022.09.006
  36. Marques LM, 2023, SOMATOSENS MOT RES, DOI 10.1080/08990220.2023.2188926
  37. Martire LM, 2016, SCAND J PAIN, V10, P6, DOI 10.1016/j.sjpain.2015.07.004
  38. MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
  39. Miyakoshi M, 2020, Makoto's preprocessing pipeline
  40. Nestler EJ, 2002, NEURON, V34, P13, DOI 10.1016/S0896-6273(02)00653-0
  41. Onton J, 2006, PROG BRAIN RES, V159, P99, DOI 10.1016/S0079-6123(06)59007-7
  42. Osborne J. W., 2002, PRACT ASSESS RES EVA, V8, DOI 10.7275/r222-hv23
  43. Palva S, 2007, TRENDS NEUROSCI, V30, P150, DOI 10.1016/j.tins.2007.02.001
  44. Pezawas L, 2004, J NEUROSCI, V24, P10099, DOI 10.1523/JNEUROSCI.2680-04.2004
  45. Pfurtscheller G, 1999, CLIN NEUROPHYSIOL, V110, P1842, DOI 10.1016/S1388-2457(99)00141-8
  46. Hara ACP, 2022, SPINAL CORD, V60, P1123, DOI 10.1038/s41393-022-00831-9
  47. Raja SN, 2020, PAIN, V161, P1976, DOI 10.1097/j.pain.0000000000001939
  48. Roy N, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-74780-9
  49. SANGER F, 1977, P NATL ACAD SCI USA, V74, P5463, DOI 10.1073/pnas.74.12.5463
  50. SCHREITERGASSER U, 1994, ELECTROEN CLIN NEURO, V90, P267, DOI 10.1016/0013-4694(94)90144-9
  51. Schumacher J, 2005, BIOL PSYCHIAT, V58, P307, DOI 10.1016/j.biopsych.2005.04.006
  52. Sears C, 2011, BIPOLAR DISORD, V13, P630, DOI 10.1111/j.1399-5618.2011.00955.x
  53. Simis M, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-04957-x
  54. Simis M, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.695406
  55. Simis M, 2022, PAIN MED, V23, P955, DOI 10.1093/pm/pnab124
  56. Simis M, 2021, FRONT HUM NEUROSCI, V15, DOI 10.3389/fnhum.2021.548558
  57. Skúladóttir H, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph181910306
  58. Sweeney CG, 2017, MOL BIOL EVOL, V34, P1629, DOI 10.1093/molbev/msx105
  59. Tayeb Z, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-62525-7
  60. Tour J, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0277427
  61. Wascher E, 2014, BIOL PSYCHOL, V96, P57, DOI 10.1016/j.biopsycho.2013.11.010
  62. Xu Xiaohan, 2020, F1000Res, V9, DOI 10.12688/f1000research.20441.1
  63. Zoon HFA, 2013, J CLIN NEUROPHYSIOL, V30, P261, DOI 10.1097/WNP.0b013e3182933d6e