Integrated systems biology approach identifies gene targets for endothelial dysfunction

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
GIUDICE, Girolamo
MODESTIA, Silvestre Massimo
ZALMAS, Lykourgos-Panagiotis
FANG, Yun
PETSALAKI, Evangelia
Citação
MOLECULAR SYSTEMS BIOLOGY, v.19, n.12, article ID e11462, 19p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro- and anti-ED network. We found 26 genes that, upon silencing, exacerbated the ED phenotypes tested, and network propagation identified a pro-ED network enriched in functions associated with inflammatory responses. Conversely, 31 genes ameliorated ED phenotypes, pointing to potential ED targets, and the respective anti-ED network was enriched in hypoxia, angiogenesis and cancer-related processes. An independent screen with 17 drugs found general agreement with the trends from our siRNA screen and further highlighted DUSP1, IL6 and CCL2 as potential candidates for targeting ED. Overall, our results demonstrate the potential of integrated system biology approaches in discovering disease-specific candidate drug targets for endothelial dysfunction. imageMulti-omics data integration, genetic and pharmacological perturbations, and network analysis on endothelial cells are combined to identify endothelial dysfunction network signatures and prioritise candidate therapeutic targets.Multi-omics data integration of endothelial cells treated with mimics of major cardiovascular disease factors identified 81 putative endothelial dysfunction (ED) genes.Upon siRNA-mediated gene knockdown, 83% of ED gene candidates affected at least one ED phenotype (26 exacerbating and 31 ameliorating the ED phenotypes).The analyses reveal emergent properties of disease networks, distinguishing between adaptation and rewiring for survival and those associated with deregulation that can be targeted for ED treatment.An orthogonal drug screen on treated endothelial cells provided additional support for DUSP1, IL6 and CCL2 as putative targets for ED. Multi-omics data integration, genetic and pharmacological perturbations, and network analysis on endothelial cells are combined to identify endothelial dysfunction network signatures and prioritise candidate therapeutic targets.image
Palavras-chave
data integration, drug targets, endothelial dysfunction, network analysis, systems biology
Referências
  1. Abe H, 2017, J ATHEROSCLER THROMB, V24, P884, DOI 10.5551/jat.RV17009
  2. Alsaigh T, 2022, COMMUN BIOL, V5, DOI 10.1038/s42003-022-04056-7
  3. Aman J, 2023, CIRC RES, V132, P355, DOI 10.1161/CIRCRESAHA.122.322332
  4. Appelhoff RJ, 2004, J BIOL CHEM, V279, P38458, DOI 10.1074/jbc.M406026200
  5. Birukov KG, 2004, MICROVASC RES, V67, P18, DOI 10.1016/j.mvr.2003.09.004
  6. Boulanger CM, 2016, ARTERIOSCL THROM VAS, V36, pE26, DOI 10.1161/ATVBAHA.116.306940
  7. Boyle EI, 2004, BIOINFORMATICS, V20, P3710, DOI 10.1093/bioinformatics/bth456
  8. Carpenter AE, 2006, GENOME BIOL, V7, DOI 10.1186/gb-2006-7-10-r100
  9. Castro-Mondragon JA, 2022, NUCLEIC ACIDS RES, V50, pD165, DOI 10.1093/nar/gkab1113
  10. Català-Solsona J, 2021, FRONT MOL NEUROSCI, V14, DOI 10.3389/fnmol.2021.786226
  11. Chan YH, 2020, FRONT CELL DEV BIOL, V7, DOI 10.3389/fcell.2019.00280
  12. Coutinho AE, 2011, MOL CELL ENDOCRINOL, V335, P2, DOI 10.1016/j.mce.2010.04.005
  13. Cyr AR, 2020, CRIT CARE CLIN, V36, P307, DOI 10.1016/j.ccc.2019.12.009
  14. Daiber A, 2020, FREE RADICAL BIO MED, V157, P15, DOI 10.1016/j.freeradbiomed.2020.02.026
  15. Daiber A, 2017, BRIT J PHARMACOL, V174, P1591, DOI 10.1111/bph.13517
  16. de Vries MR, 2016, CURR OPIN LIPIDOL, V27, P499, DOI 10.1097/MOL.0000000000000339
  17. Deanfield JE, 2007, CIRCULATION, V115, P1285, DOI 10.1161/CIRCULATIONAHA.106.652859
  18. Huynh DTN, 2019, ARCH PHARM RES, V42, P848
  19. Du LN, 2015, MOL MED REP, V11, P3708, DOI 10.3892/mmr.2015.3172
  20. Fang Y, 2019, COMPR PHYSIOL, V9, P873, DOI 10.1002/cphy.c180020
  21. Gao JH, 2019, CLIN CHIM ACTA, V495, P538, DOI 10.1016/j.cca.2019.05.022
  22. Gencer S., 2021, Cell, P1
  23. Godo S, 2017, ARTERIOSCL THROM VAS, V37, pE108, DOI 10.1161/ATVBAHA.117.309813
  24. Gokce N, 2002, CIRCULATION, V105, P1567, DOI 10.1161/01.CIR.0000012543.55874.47
  25. Han H, 2018, NUCLEIC ACIDS RES, V46, pD380, DOI 10.1093/nar/gkx1013
  26. Hao YH, 2021, CELL, V184, P3573, DOI 10.1016/j.cell.2021.04.048
  27. Hardoon DR, 2004, NEURAL COMPUT, V16, P2639, DOI 10.1162/0899766042321814
  28. Harispe S, 2014, BIOINFORMATICS, V30, P740, DOI 10.1093/bioinformatics/btt581
  29. Hennigs JK, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10102712
  30. Herrmann SM, 2000, ARTERIOSCL THROM VAS, V20, P2386, DOI 10.1161/01.ATV.20.11.2386
  31. Hogan NT, 2017, ELIFE, V6, DOI 10.7554/eLife.22536
  32. Hornbeck PV, 2015, NUCLEIC ACIDS RES, V43, pD512, DOI 10.1093/nar/gku1267
  33. Irwin JJ, 2020, J CHEM INF MODEL, V60, P6065, DOI 10.1021/acs.jcim.0c00675
  34. Ivan M, 2017, MOL CELL, V66, P772, DOI 10.1016/j.molcel.2017.06.002
  35. Jain S, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-562
  36. Jia J, 2016, MICROVASC RES, V105, P103, DOI 10.1016/j.mvr.2016.02.004
  37. Jones RC., 2022, Gene Expression Omnibus GSE201333
  38. Jones RC, 2022, SCIENCE, V376, P711, DOI 10.1126/science.abl4896
  39. Kerrien S, 2012, NUCLEIC ACIDS RES, V40, pD841, DOI 10.1093/nar/gkr1088
  40. Kim I, 2001, J BIOL CHEM, V276, P7614, DOI 10.1074/jbc.M009705200
  41. Kim TH., 2018, Cold Spring Harb Protoc, V2018
  42. Kolde R, 2012, BIOINFORMATICS, V28, P573, DOI 10.1093/bioinformatics/btr709
  43. Krause MD, 2018, P NATL ACAD SCI USA, V115, pE11349, DOI 10.1073/pnas.1810568115
  44. Krause MD., 2018, Zenodo-260122
  45. Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/nmeth.1923, 10.1038/NMETH.1923]
  46. Lawrence M, 2013, PLOS COMPUT BIOL, V9, DOI 10.1371/journal.pcbi.1003118
  47. Lawrence M, 2009, BIOINFORMATICS, V25, P1841, DOI 10.1093/bioinformatics/btp328
  48. Libby P, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10040951
  49. Liu BX, 2020, HUM GENET, V139, P95, DOI 10.1007/s00439-019-02044-2
  50. Liu F, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084982
  51. Liu ZQ, 2021, ARTERIOSCL THROM VAS, V41, P2575, DOI 10.1161/ATVBAHA.121.316797
  52. Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
  53. Luo WB, 2011, CELL, V145, P732, DOI 10.1016/j.cell.2011.03.054
  54. Luscher TF, 1997, CLIN CARDIOL, V20, P3
  55. MacLeod C, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22147622
  56. Martinez-Gonzalez J, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms222111371
  57. Matsuzawa Y, 2013, J AM HEART ASSOC, V2, DOI 10.1161/JAHA.113.000426
  58. McQuin C, 2018, PLOS BIOL, V16, DOI 10.1371/journal.pbio.2005970
  59. Messmer K, 2007, INT J DEV NEUROSCI, V25, P29, DOI 10.1016/j.ijdevneu.2006.11.003
  60. Mudau M, 2012, CARDIOVASC J AFR, V23, DOI 10.5830/CVJA-2011-068
  61. Mussbacher M, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.00085
  62. Neckár J, 2018, AM J PHYSIOL-HEART C, V315, pH1148, DOI 10.1152/ajpheart.00726.2017
  63. Ochoa D, 2022, NAT REV DRUG DISCOV, V21, P551, DOI 10.1038/d41573-022-00120-3
  64. Ochoa D, 2021, NUCLEIC ACIDS RES, V49, pD1302, DOI 10.1093/nar/gkaa1027
  65. Oesterle A, 2017, CIRC RES, V120, P229, DOI 10.1161/CIRCRESAHA.116.308537
  66. Orchard S, 2014, NUCLEIC ACIDS RES, V42, pD358, DOI 10.1093/nar/gkt1115
  67. Peiffer V, 2013, CARDIOVASC RES, V99, P242, DOI 10.1093/cvr/cvt044
  68. Piñero J, 2020, NUCLEIC ACIDS RES, V48, pD845, DOI 10.1093/nar/gkz1021
  69. Pinheiro-de-Sousa I, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-05404-7
  70. Premer Courtney, 2019, Mayo Clin Proc Innov Qual Outcomes, V3, P1, DOI 10.1016/j.mayocpiqo.2018.12.006
  71. Putri GH, 2022, BIOINFORMATICS, V38, P2943, DOI 10.1093/bioinformatics/btac166
  72. Quertermous Thomas, 2019, GEO
  73. Rahtu-Korpela L, 2016, ARTERIOSCL THROM VAS, V36, P608, DOI 10.1161/ATVBAHA.115.307136
  74. Ridker PM, 2021, CIRC RES, V128, P1728, DOI 10.1161/CIRCRESAHA.121.319077
  75. Romanoski C E, 2017, GEO
  76. Schächinger V, 2000, CIRCULATION, V101, P1899, DOI 10.1161/01.CIR.101.16.1899
  77. Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089
  78. Shi FC, 2021, ATHEROSCLEROSIS, V320, P70, DOI 10.1016/j.atherosclerosis.2021.01.018
  79. Shin N, 2009, BIOCHEM BIOPH RES CO, V387, P251, DOI 10.1016/j.bbrc.2009.06.135
  80. Soehnlein O, 2021, NAT REV DRUG DISCOV, V20, P589, DOI 10.1038/s41573-021-00198-1
  81. Souilhol C, 2020, NAT REV CARDIOL, V17, P52, DOI 10.1038/s41569-019-0239-5
  82. Stancu C, 2001, J CELL MOL MED, V5, P378, DOI 10.1111/j.1582-4934.2001.tb00172.x
  83. Steinberg D, 2010, ARTERIOSCL THROM VAS, V30, P2311, DOI 10.1161/ATVBAHA.108.179697
  84. Sterling T, 2015, J CHEM INF MODEL, V55, P2324, DOI 10.1021/acs.jcim.5b00559
  85. Su YC, 2023, COMPUT BIOL MED, V159, DOI 10.1016/j.compbiomed.2023.106969
  86. Surdo PL., 2017, Curr Protoc Bioinformatics, V58, p8.23.1
  87. Thomas PD, 2022, PROTEIN SCI, V31, P8, DOI 10.1002/pro.4218
  88. Tong HH, 2008, KNOWL INF SYST, V14, P327, DOI 10.1007/s10115-007-0094-2
  89. Torkamani Ali, 2020, GEO
  90. Tromans-Coia C, 2023, Arxiv, DOI [arXiv:2306.01915, DOI 10.48550/ARXIV.2306.01915, 10.48550/arXiv.2306.01915]
  91. Türei D, 2016, NAT METHODS, V13, P965, DOI 10.1038/nmeth.4077
  92. UniProt Consortium, 2021, Nucleic Acids Res, V49, pD480, DOI 10.1093/nar/gkaa1100
  93. Vogler M, 2015, PFLUG ARCH EUR J PHY, V467, P2141, DOI 10.1007/s00424-014-1667-z
  94. Wang J, 2016, AUTOPHAGY, V12, P1791, DOI 10.1080/15548627.2016.1203483
  95. Willighagen EL, 2013, J CHEMINFORMATICS, V5, DOI 10.1186/1758-2946-5-23
  96. Wirka RC, 2019, NAT MED, V25, P1280, DOI 10.1038/s41591-019-0512-5
  97. Xie L, 2012, J CLIN INVEST, V122, P2827, DOI 10.1172/JCI62374
  98. Xu SW, 2021, PHARMACOL REV, V73, P924, DOI 10.1124/pharmrev.120.000096
  99. Yoshitomi Y, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22062804
  100. Young L, 2010, NAT PROTOC, V5, P929, DOI 10.1038/nprot.2010.43
  101. Yu GC, 2015, BIOINFORMATICS, V31, P2382, DOI 10.1093/bioinformatics/btv145
  102. Yu GC, 2012, OMICS, V16, P284, DOI 10.1089/omi.2011.0118
  103. Zhu LJ, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-237
  104. Zhu T, 2013, J MED CHEM, V56, P6560, DOI 10.1021/jm301916b