Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
FUENTES, Lisa de las
SCHWANDER, Karen L. M.
BROWN, Michael R.
BENTLEY, Amy R.
WINKLER, Thomas W.
SUNG, Yun Ju
MUNROE, Patricia B.
MILLER, Clint L.
ASCHARD, Hugo
ASLIBEKYAN, Stella
Citação
FRONTIERS IN GENETICS, v.14, article ID 1235337, 16p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes.Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: ""Some College"" (yes/no, for any education beyond high school) and ""Graduated College"" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 x 10(-8)) and suggestive (p < 1 x 10(-6)) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals).Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue.Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.
Palavras-chave
educational attainment, lipids, cholesterol, triglycerides, genome-wide association study, meta-analysis
Referências
  1. Ahima RS, 2006, OBESITY, V14, P242, DOI 10.1038/oby.2006.317
  2. Altshuler DM, 2012, NATURE, V491, P56, DOI 10.1038/nature11632
  3. Assari Shervin, 2019, Hosp Pract Res, V4, P86, DOI 10.15171/HPR.2019.17
  4. Assary E, 2018, SEMIN CELL DEV BIOL, V77, P133, DOI 10.1016/j.semcdb.2017.10.016
  5. Bacon C, 2012, HUM GENET, V131, P1687, DOI 10.1007/s00439-012-1193-z
  6. Baigent C, 2005, LANCET, V366, P1267, DOI 10.1016/S0140-6736(05)67394-1
  7. Bays HE, 2013, J CLIN LIPIDOL, V7, P304, DOI 10.1016/j.jacl.2013.04.001
  8. Blockus H, 2014, CURR OPIN NEUROBIOL, V27, P82, DOI 10.1016/j.conb.2014.03.003
  9. Braveman PA, 2005, JAMA-J AM MED ASSOC, V294, P2879, DOI 10.1001/jama.294.22.2879
  10. Cao XH, 2007, EUR J NEUROSCI, V25, P1815, DOI 10.1111/j.1460-9568.2007.05431.x
  11. Cooke PS, 2007, OBESITY, V15, P1400, DOI 10.1038/oby.2007.168
  12. de las Fuentes L, 2021, MOL PSYCHIATR, V26, P2111, DOI 10.1038/s41380-020-0719-3
  13. Devlin B, 1999, BIOMETRICS, V55, P997, DOI 10.1111/j.0006-341X.1999.00997.x
  14. Dietschy JM, 2001, CURR OPIN LIPIDOL, V12, P105, DOI 10.1097/00041433-200104000-00003
  15. Santo LRE, 2022, INT HEALTH, V14, P346, DOI 10.1093/inthealth/ihz089
  16. Fedele L, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-02927-4
  17. Franssen R, 2011, MED CLIN N AM, V95, P893, DOI 10.1016/j.mcna.2011.06.003
  18. FRIEDEWALD WT, 1972, CLIN CHEM, V18, P499
  19. Gallo LC, 2001, PSYCHOSOM MED, V63, P925, DOI 10.1097/00006842-200111000-00011
  20. Gliozzi M, 2021, PHARMACOL RES, V163, DOI 10.1016/j.phrs.2020.105215
  21. Gnudi L, 1996, AM J PHYSIOL-REG I, V270, pR785, DOI 10.1152/ajpregu.1996.270.4.R785
  22. Graham SJL, 2009, DIFFERENTIATION, V77, P239, DOI 10.1016/j.diff.2008.10.013
  23. Hamad R, 2019, PLOS MED, V16, DOI 10.1371/journal.pmed.1002834
  24. Jung UJ, 2014, INT J MOL SCI, V15, P6184, DOI 10.3390/ijms15046184
  25. Kamm GB, 2013, MOL BIOL EVOL, V30, P1088, DOI 10.1093/molbev/mst023
  26. KAPLAN GA, 1993, CIRCULATION, V88, P1973, DOI 10.1161/01.CIR.88.4.1973
  27. Kavousi M., 2022, medRxiv, DOI [10.1101/2022.05.02.22273844v1, DOI 10.1101/2022.05.02.22273844V1, DOI 10.1101/2022.05.02.22273844]
  28. Kraft P, 2007, HUM HERED, V63, P111, DOI 10.1159/000099183
  29. Krycer JR, 2017, FEBS LETT, V591, P322, DOI 10.1002/1873-3468.12549
  30. Kushnireva L, 2021, FRONT SYNAPTIC NEURO, V12, DOI 10.3389/fnsyn.2020.573714
  31. Ledreux A, 2016, BEHAV BRAIN RES, V312, P294, DOI 10.1016/j.bbr.2016.06.012
  32. Leino M, 1999, INT J EPIDEMIOL, V28, P667, DOI 10.1093/ije/28.4.667
  33. Leng B, 2015, J HYPERTENS, V33, P221, DOI 10.1097/HJH.0000000000000428
  34. Li SN, 2020, NAT METAB, V2, P1077, DOI 10.1038/s42255-020-00289-0
  35. Liu P, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12988-8
  36. Loriol C, 2013, BIOL CELL, V105, P30, DOI 10.1111/boc.201200016
  37. LoTurco JJ, 2006, TRENDS NEUROSCI, V29, P407, DOI 10.1016/j.tins.2006.05.006
  38. Majewski L, 2017, BBA-MOL CELL RES, V1864, P1071, DOI 10.1016/j.bbamcr.2016.11.025
  39. Manning AK, 2011, GENET EPIDEMIOL, V35, P11, DOI 10.1002/gepi.20546
  40. Matsuda S, 2009, J BIOL CHEM, V284, P15815, DOI 10.1074/jbc.M109.006403
  41. MATTHEWS KA, 1989, AM J EPIDEMIOL, V129, P1132, DOI 10.1093/oxfordjournals.aje.a115235
  42. Melbourne CA, 2022, ENVIRON INT, V159, DOI 10.1016/j.envint.2021.107041
  43. Metcalf PA, 1998, AM J EPIDEMIOL, V148, P750
  44. Miao L, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10950-6
  45. Okada M, 2009, BIOCHEM BIOPH RES CO, V379, P249, DOI 10.1016/j.bbrc.2008.12.069
  46. Okbay A, 2016, NATURE, V533, P539, DOI 10.1038/nature17671
  47. Peloso GM, 2014, AM J HUM GENET, V94, P223, DOI 10.1016/j.ajhg.2014.01.009
  48. Perera HKI, 2003, MOL BIOL CELL, V14, P2946, DOI 10.1091/mbc.E02-11-0722
  49. Pistell PJ, 2010, J NEUROIMMUNOL, V219, P25, DOI 10.1016/j.jneuroim.2009.11.010
  50. Pradhan G, 2013, CURR OPIN CLIN NUTR, V16, P619, DOI 10.1097/MCO.0b013e328365b9be
  51. Rao DC, 2017, CIRC-CARDIOVASC GENE, V10, DOI 10.1161/CIRCGENETICS.116.001649
  52. Romero A, 2010, EUR J ENDOCRINOL, V163, P1, DOI 10.1530/EJE-10-0099
  53. Scherer T, 2016, DIABETES, V65, P1511, DOI 10.2337/db15-1552
  54. Sémon M, 2006, MOL BIOL EVOL, V23, P1715, DOI 10.1093/molbev/msl034
  55. SHEA S, 1993, PREV MED, V22, P203, DOI 10.1006/pmed.1993.1017
  56. Shulman GI, 2014, NEW ENGL J MED, V371, P1131, DOI 10.1056/NEJMra1011035
  57. SOREL JE, 1992, AM J EPIDEMIOL, V135, P1339, DOI 10.1093/oxfordjournals.aje.a116245
  58. Sung YJ, 2015, AM J HYPERTENS, V28, P343, DOI [10.1093/ajh/hpu149, 10.1093/ajh/hpt283]
  59. Swanger SA, 2016, AM J HUM GENET, V99, P1261, DOI 10.1016/j.ajhg.2016.10.002
  60. Tamaki K, 2008, NEUROSCI LETT, V433, P183, DOI 10.1016/j.neulet.2007.12.062
  61. Tyroler H. A., 1989, Hypertension, V13, pI94, DOI [DOI 10.1161/01.HYP.13.5_SUPPL.I94, DOI 10.1161/01.HYP.13.5_Suppl.I94]
  62. Wang H, 2009, AM J PHYSIOL-ENDOC M, V297, pE271, DOI 10.1152/ajpendo.90920.2008
  63. Wang K, 2010, NUCLEIC ACIDS RES, V38, DOI 10.1093/nar/gkq603
  64. Ward LD, 2012, NUCLEIC ACIDS RES, V40, pD930, DOI 10.1093/nar/gkr917
  65. Watanabe K, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01261-5
  66. Werme J, 2021, TRANSL PSYCHIAT, V11, DOI 10.1038/s41398-021-01288-9
  67. Willer CJ, 2010, BIOINFORMATICS, V26, P2190, DOI 10.1093/bioinformatics/btq340
  68. Woo JMP, 2022, J INTERN MED, V291, P755, DOI 10.1111/joim.13448
  69. Xu Q, 2012, FEBS LETT, V586, P1803, DOI 10.1016/j.febslet.2012.05.018
  70. Yang L, 2015, INT J CLIN EXP PATHO, V8, P10725
  71. Yi CX, 2012, DIS MODEL MECH, V5, P583, DOI 10.1242/dmm.009902
  72. Zhang YQ, 2018, NEUROSCIENCE, V371, P207, DOI 10.1016/j.neuroscience.2017.12.001
  73. Zhou Y, 2014, J NEURAL TRANSM, V121, P799, DOI 10.1007/s00702-014-1180-8
  74. Zou YK, 2015, J BIOL CHEM, V290, P30607, DOI 10.1074/jbc.M115.681627