Challenges and Applications of Genetic Testing in Dilated Cardiomyopathy: Genotype, Phenotype and Clinical Implications

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ARQUIVOS BRASILEIROS CARDIOLOGIA
Citação
ARQUIVOS BRASILEIROS DE CARDIOLOGIA, v.120, n.10, article ID e20230174, 8p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Genetic tests for dilated cardiomyopathy (DCM) have a diagnostic yield of up to 40%, but there is significant genetic heterogeneity and other challenges, such as variable expressivity and incomplete penetrance. Pedigree analysis is essential for distinguishing between sporadic and familial DCM cases by assessing family history. Familial DCM yields higher results in genetic testing, but sporadic DCM does not rule out the possibility of a genetic cause. Some genes have specific phenotypes, with the Lamin gene (LMNA) being associated with a phenotype of malignant arrhythmias and advanced heart failure (HF). The presence of a causal genetic variant can also aid in prognostic evaluation, identifying more severe cases with lower rates of reverse remodeling (RR) compared to individuals with a negative genotype. Current guidelines recommend genetic evaluation and counseling for individuals with DCM, along with cascade screening in first-degree relatives in cases where one or more variants are identified, offering an opportunity for early diagnosis and treatment. Relatives with a positive genotype and negative phenotype are candidates for serial evaluation, with frequency varying by age. Genotype also assists in individualized recommendations for implantable cardioverter-defibrillator (ICD) placement and advice regarding physical activity and family planning. Ongoing studies are progressively elucidating the details of genotype/ phenotype relationships for a large number of variants, making molecular genetics increasingly integrated into clinical practice.
Palavras-chave
Cardiomyopathy, Dilated, Genetics, Genetic Testing
Referências
  1. A Beneficencia Portuguesa de Sao Paulo, 2023, Projeto Mapa Genoma Brasil: Medicina de Precisao em Oncologia e Cardiologia no SUS
  2. Aimo A, 2019, JACC-HEART FAIL, V7, P782, DOI 10.1016/j.jchf.2019.06.004
  3. Al-Khatib SM, 2018, CIRCULATION, V138, pE272, DOI [10.1161/CIR.0000000000000549, 10.1161/CIR.0000000000000548]
  4. Aronson N, 2015, ANN NY ACAD SCI, V1346, P81, DOI 10.1111/nyas.12614
  5. Boen HM, 2022, J HEART LUNG TRANSPL, V41, P1218, DOI 10.1016/j.healun.2022.03.020
  6. Centro de Medicina de Precisao em Cardiologia, 2023, Cardiologia C-CdMdPe
  7. Charron P, 2010, EUR HEART J, V31, P2715, DOI 10.1093/eurheartj/ehq271
  8. Elliott P, 2008, EUR HEART J, V29, P270, DOI 10.1093/eurheartj/ehm342
  9. Escobar-Lopez L, 2022, J AM COLL CARDIOL, V80, P1115, DOI 10.1016/j.jacc.2022.06.040
  10. Escobar-Lopez L, 2021, J AM COLL CARDIOL, V78, P1682, DOI 10.1016/j.jacc.2021.08.039
  11. Haas J, 2015, EUR HEART J, V36, P1123, DOI 10.1093/eurheartj/ehu301
  12. Heidenreich PA, 2022, CIRCULATION, V145, pE895, DOI 10.1161/CIR.0000000000001063
  13. Herman DS, 2012, NEW ENGL J MED, V366, P619, DOI 10.1056/NEJMoa1110186
  14. Hershberger RE, 2018, J CARD FAIL, V24, P281, DOI 10.1016/j.cardfail.2018.03.004
  15. Jacoby D, 2012, EUR HEART J, V33, P296, DOI 10.1093/eurheartj/ehr260
  16. Jordan E, 2021, HEART, V107, P106, DOI 10.1136/heartjnl-2020-316658
  17. Kamdar F, 2016, J AM COLL CARDIOL, V67, P2533, DOI 10.1016/j.jacc.2016.02.081
  18. Kamisago M, 2000, NEW ENGL J MED, V343, P1688, DOI 10.1056/NEJM200012073432304
  19. Khush KK, 2019, J HEART LUNG TRANSPL, V38, P1056, DOI 10.1016/j.healun.2019.08.004
  20. Kim CA, 2019, Genetica na Pratica Pediatrica, V2nd
  21. Ma N, 2018, CIRCULATION, V138, P2666, DOI 10.1161/CIRCULATIONAHA.117.032273
  22. Marcondes-Braga FG, 2021, ARQ BRAS CARDIOL, V116, P1174, DOI 10.36660/abc.20210367
  23. Matthijs G, 2016, EUR J HUM GENET, V24, P2, DOI 10.1038/ejhg.2015.226
  24. McDonagh TA, 2021, EUR HEART J, V42, P3599, DOI 10.1093/eurheartj/ehab368
  25. McNally EM, 2017, CIRC RES, V121, P731, DOI 10.1161/CIRCRESAHA.116.309396
  26. Medeiros A, 2011, AM HEART J, V162, P1088, DOI 10.1016/j.ahj.2011.07.028
  27. Melo DG, 2012, GENET TEST MOL BIOMA, V16, P651, DOI 10.1089/gtmb.2011.0286
  28. Ministerio da Saude, 2023, Projeto Genomas Brasil
  29. Muchir A, 2012, HUM MOL GENET, V21, P4325, DOI 10.1093/hmg/dds265
  30. Ommen SR, 2020, CIRCULATION, V142, pe558, DOI 10.1161/CIR.0000000000000937
  31. Orphanou N, 2022, HEART FAIL REV, V27, P1173, DOI 10.1007/s10741-021-10139-0
  32. Ortiz-Genga MF, 2016, J AM COLL CARDIOL, V68, P2440, DOI 10.1016/j.jacc.2016.09.927
  33. Paldino A, 2018, CURR CARDIOL REP, V20, DOI 10.1007/s11886-018-1030-7
  34. Pessente GD, 2022, FRONT CARDIOVASC MED, V9, DOI 10.3389/fcvm.2022.823717
  35. Pinto YM, 2016, EUR HEART J, V37, P1850, DOI 10.1093/eurheartj/ehv727
  36. Pugh TJ, 2014, GENET MED, V16, P601, DOI 10.1038/gim.2013.204
  37. Rede Nacional de Genomica Cardiovascular, 2023, CardiovascularR-RNdG
  38. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  39. Rosenbaum AN, 2020, NAT REV CARDIOL, V17, P286, DOI 10.1038/s41569-019-0284-0
  40. Simoes MV, 2021, ARQ BRAS CARDIOL, V117, P561, DOI 10.36660/abc.20210718
  41. Sinagra G, 2017, CIRC-CARDIOVASC GENE, V10, DOI 10.1161/CIRCGENETICS.117.002004
  42. Towbin JA, 2019, HEART RHYTHM, V16, pE301, DOI 10.1016/j.hrthm.2019.05.007
  43. Wilde AAM, 2022, HEART RHYTHM, V19, pE1, DOI 10.1016/j.hrthm.2022.03.1225