DNA methylation-based depiction of the immune microenvironment and immune-associated long non-coding RNAs in oral cavity squamous cell carcinomas

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Autores
CALANCA, Naiade
FRANCISCO, Ana Lucia Noronha
BIZINELLI, Daniela
KUASNE, Hellen
BARROS FILHO, Mateus Camargo
FLORES, Bianca Campos Troncarelli
PINTO, Clovis Antonio Lopes
RAINHO, Claudia Aparecida
SOARES, Milena Botelho Pereira
Citação
BIOMEDICINE & PHARMACOTHERAPY, v.167, article ID 115559, 14p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Oral cavity squamous cell carcinoma (OSCC) is a complex and dynamic disease characterized by clinicopathological and molecular heterogeneity. Spatial and temporal heterogeneity of cell subpopulations has been associated with cancer progression and implicated in the prognosis and therapy response. Emerging evidence indicates that aberrant epigenetic profiles in OSCC may foster an immunosuppressive tumor microenvironment by modulating the expression of immune-related long non-coding RNAs (lncRNAs). DNA methylation analysis was performed in 46 matched OSCC and normal adjacent tissue samples using a genome-wide platform (Infinium HumanMethylation450 BeadChip). Reference-based computational deconvolution (MethylCIBERSORT) was applied to infer the immune cell composition of the bulk samples. The expression levels of genes encoding immune markers and differentially methylated lncRNAs were investigated using The Cancer Genome Atlas dataset. OSCC specimens presented distinct immune cell composition, including the enrichment of monocyte lineage cells, natural killer cells, cytotoxic T-lymphocytes, regulatory T-lymphocytes, and neutrophils. In contrast, B-lymphocytes, effector T-lymphocytes, and fibroblasts were diminished in tumor samples. The hypomethylation of three immune-associated lncRNAs (MEG3, MIR155HG, and WFDC21P) at individual CpG sites was confirmed by bisulfite-pyrosequencing. Also, the upregulation of a set of immune markers (FOXP3, GZMB, IL10, IL2RA, TGFB, IFNG, TDO2, IDO1, and HIF1A) was detected. The immune cell composition, immune markers alteration, and dysregulation of immune-associated lncRNAs reinforce the impact of the immune microenvironment in OSCC. These concurrent factors contribute to tumor heterogeneity, suggesting that epiimmunotherapy could be an efficient alternative to treat OSCC.
Palavras-chave
Oral cancer, Tumor immune microenvironment, LncRNAs, DNA methylation, Deconvolution
Referências
  1. Abel AM, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.01869
  2. Adil AAM, 2019, 3 BIOTECH, V9, DOI 10.1007/s13205-019-1707-7
  3. Alspach E, 2019, CSH PERSPECT BIOL, V11, DOI 10.1101/cshperspect.a028480
  4. Atianand MK, 2017, ANNU REV IMMUNOL, V35, P177, DOI 10.1146/annurev-immunol-041015-055459
  5. Basu B, 2017, CLIN EPIGENETICS, V9, DOI 10.1186/s13148-017-0314-x
  6. Chakravarthy A, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05570-1
  7. Colaprico A, 2016, NUCLEIC ACIDS RES, V44, DOI 10.1093/nar/gkv1507
  8. de Martel C, 2020, LANCET GLOB HEALTH, V8, pE180, DOI 10.1016/S2214-109X(19)30488-7
  9. Diao PF, 2021, J IMMUNOTHER CANCER, V9, DOI 10.1136/jitc-2021-002434
  10. Durinck S, 2005, BIOINFORMATICS, V21, P3439, DOI 10.1093/bioinformatics/bti525
  11. Elmusrati A, 2021, INT J ORAL SCI, V13, DOI 10.1038/s41368-021-00131-7
  12. Esteller M, 2007, NAT REV GENET, V8, P286, DOI 10.1038/nrg2005
  13. Fallarino F, 2006, J IMMUNOL, V176, P6752, DOI 10.4049/jimmunol.176.11.6752
  14. Fridman WH, 2022, NAT REV CLIN ONCOL, V19, P441, DOI 10.1038/s41571-022-00619-z
  15. Galon J, 2019, NAT REV DRUG DISCOV, V18, P197, DOI 10.1038/s41573-018-0007-y
  16. Goksuluk D, 2016, R J, V8, P213
  17. Goldman MJ, 2020, NAT BIOTECHNOL, V38, P675, DOI 10.1038/s41587-020-0546-8
  18. Grzywa TM, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.00938
  19. Gu ZG, 2016, BIOINFORMATICS, V32, P2847, DOI 10.1093/bioinformatics/btw313
  20. Hanahan D, 2022, CANCER DISCOV, V12, P31, DOI 10.1158/2159-8290.CD-21-1059
  21. Hsu PJ, 2020, ORAL ONCOL, V102, DOI 10.1016/j.oraloncology.2019.104552
  22. Huang SN, 2020, MED SCI MONITOR, V26, DOI 10.12659/MSM.922854
  23. Huang YX, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.800315
  24. Huang ZX, 2019, J ORAL PATHOL MED, V48, P788, DOI 10.1111/jop.12927
  25. Jithesh PV, 2013, BRIT J CANCER, V108, P370, DOI 10.1038/bjc.2012.568
  26. Johnson DE, 2020, NAT REV DIS PRIMERS, V6, DOI 10.1038/s41572-020-00224-3
  27. Kalogirou EM, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.611115
  28. Khan S, 2021, LIFE SCI, V271, DOI 10.1016/j.lfs.2021.119152
  29. Kim SY, 2019, CLIN EPIGENETICS, V11, DOI 10.1186/s13148-019-0715-0
  30. Kondoh N, 2019, JPN DENT SCI REV, V55, P113, DOI 10.1016/j.jdsr.2019.09.001
  31. Lao XM, 2016, ONCOL LETT, V11, P2027, DOI 10.3892/ol.2016.4184
  32. Lawrence MS, 2015, NATURE, V517, P576, DOI 10.1038/nature14129
  33. Lee GR, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030730
  34. Li NN, 2019, BIOMED PHARMACOTHER, V117, DOI 10.1016/j.biopha.2019.109015
  35. Li XJY, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9010190
  36. Liu ZX, 2017, ONCOL LETT, V14, P4053, DOI 10.3892/ol.2017.6682
  37. Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
  38. Mantovani A, 2021, CELL MOL IMMUNOL, V18, P566, DOI 10.1038/s41423-020-00613-4
  39. Masoumi F, 2019, J NEUROIMMUNOL, V328, P50, DOI 10.1016/j.jneuroim.2018.11.013
  40. Mellor AL, 2004, NAT REV IMMUNOL, V4, P762, DOI 10.1038/nri1457
  41. Mondal T, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8743
  42. Morris TJ, 2014, BIOINFORMATICS, V30, P428, DOI 10.1093/bioinformatics/btt684
  43. Mounir M, 2019, PLOS COMPUT BIOL, V15, DOI 10.1371/journal.pcbi.1006701
  44. Obaid M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-33722-2
  45. Opitz CA, 2020, BRIT J CANCER, V122, P30, DOI 10.1038/s41416-019-0664-6
  46. Pang JL, 2018, EUR REV MED PHARMACO, V22, P6991, DOI 10.26355/eurrev_201810_16170
  47. Patil VM, 2020, ORAL ONCOL, V105, DOI 10.1016/j.oraloncology.2020.104673
  48. Peltier DC, 2022, TRENDS IMMUNOL, V43, P478, DOI 10.1016/j.it.2022.04.002
  49. Peng DJ, 2015, NATURE, V527, P249, DOI 10.1038/nature15520
  50. Qiu YY, 2019, BIOMED PHARMACOTHER, V111, P386, DOI 10.1016/j.biopha.2018.12.080
  51. Ritchie ME, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv007
  52. Rivera C, 2015, INT J CLIN EXP PATHO, V8, P11884
  53. de Sá RS, 2021, FRONT CELL DEV BIOL, V8, DOI 10.3389/fcell.2020.622161
  54. Seifuddin F, 2020, SCI DATA, V7, DOI 10.1038/s41597-020-00659-z
  55. Shi CY, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-15534-7
  56. Teschendorff AE, 2013, BIOINFORMATICS, V29, P189, DOI 10.1093/bioinformatics/bts680
  57. Tian Y, 2017, BIOINFORMATICS, V33, P3982, DOI 10.1093/bioinformatics/btx513
  58. Villanueva L, 2020, TRENDS IMMUNOL, V41, P676, DOI 10.1016/j.it.2020.06.002
  59. Voskoboinik I, 2015, NAT REV IMMUNOL, V15, P388, DOI 10.1038/nri3839
  60. Wang J, 2023, IMMUNOLOGY, V168, P248, DOI 10.1111/imm.13520
  61. Wu XC, 2022, ONCOTARGETS THER, V15, P219, DOI 10.2147/OTT.S349078
  62. Wu ZH, 2019, CYTOKINE GROWTH F R, V48, P24, DOI 10.1016/j.cytogfr.2019.06.003
  63. Xu Y, 2022, CANCER COMMUN, V42, P493, DOI 10.1002/cac2.12313
  64. Zhang L, 2022, CANCERS, V14, DOI 10.3390/cancers14246032
  65. Zhang SW, 2022, OXID MED CELL LONGEV, V2022, DOI 10.1155/2022/6849304
  66. Zhang XQ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19061698
  67. Zhao J, 2015, INT IMMUNOPHARMACOL, V28, P901, DOI 10.1016/j.intimp.2015.04.028
  68. Zhao YJ, 2022, FRONT GENET, V13, DOI 10.3389/fgene.2022.788580
  69. Zhou X, 2016, ORAL ONCOL, V53, P27, DOI 10.1016/j.oraloncology.2015.11.003
  70. Zhou Y, 2021, BIOCHEM PHARMACOL, V189, DOI 10.1016/j.bcp.2020.114228