Cysteine and glycine-rich protein 3 (Crp3) as a critical regulator of elastolysis, inflammation, and smooth muscle cell apoptosis in abdominal aortic aneurysm development

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN PHYSIOLOGY, v.14, article ID 1252470, 12p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease for which surgical or endovascular repair are the only currently available therapeutic strategies. The development of AAA involves the breakdown of elastic fibers (elastolysis), infiltration of inflammatory cells, and apoptosis of smooth muscle cells (SMCs). However, the specific regulators governing these responses remain unknown. We previously demonstrated that Cysteine and glycine-rich protein 3 (Crp3) sensitizes SMCs to apoptosis induced by stretching. Building upon this finding, we aimed to investigate the influence of Crp3 on elastolysis and apoptosis during AAA development. Using the elastase-CaCl2 rat model, we observed an increase in Crp3 expression, aortic diameter, and a reduction in wall thickness in wild type rats. In contrast, Crp3-/- rats exhibited a decreased incidence of AAA, with minimal or no changes in aortic diameter and thickness. Histopathological analysis revealed the absence of SMC apoptosis and degradation of elastic fibers in Crp3-/- rats, accompanied by reduced inflammation and diminished proteolytic capacity in Crp3-/- SMCs and bone marrow-derived macrophages. Collectively, our findings provide evidence that Crp3 plays a crucial role in AAA development by modulating elastolysis, inflammation, and SMC apoptosis. These results underscore the potential significance of Crp3 in the context of AAA progression and offer new insights into therapeutic targets for this disease.
Palavras-chave
abdominal aortic aneurysm, cysteine and glycine-rich protein-3, smooth muscle cell, apoptosis, elastolysis
Referências
  1. Alexander MR, 2012, ANNU REV PHYSIOL, V74, P13, DOI 10.1146/annurev-physiol-012110-142315
  2. Bennett MR, 2016, CIRC RES, V118, P692, DOI 10.1161/CIRCRESAHA.115.306361
  3. Cao X, 2017, MOL MED REP, V16, P2570, DOI 10.3892/mmr.2017.6873
  4. Chaikof EL, 2018, J VASC SURG, V67, P2, DOI 10.1016/j.jvs.2017.10.044
  5. Chang DF, 2003, DEV CELL, V4, P107, DOI 10.1016/S1534-5807(02)00396-9
  6. Chen CH, 2022, J BIOMED SCI, V29, DOI 10.1186/s12929-022-00808-z
  7. Chen CH, 2013, CARDIOVASC RES, V100, P461, DOI 10.1093/cvr/cvt207
  8. Clément N, 2007, J CELL SCI, V120, P3352, DOI 10.1242/jcs.007872
  9. Dale MA, 2015, ARTERIOSCL THROM VAS, V35, P1746, DOI 10.1161/ATVBAHA.115.305269
  10. Folkesson M, 2007, THROMB HAEMOSTASIS, V98, P427, DOI 10.1160/TH06-11-0638
  11. Campos LCG, 2018, CLIN SCI, V132, P449, DOI 10.1042/CS20171601
  12. Campos LCG, 2009, CARDIOVASC RES, V83, P140, DOI 10.1093/cvr/cvp108
  13. Golledge ALV, 2009, DIS MARKERS, V26, P181, DOI [10.3233/DMA-2009-0629, 10.1155/2009/352319]
  14. Golledge J, 2006, ARTERIOSCL THROM VAS, V26, P2605, DOI 10.1161/01.ATV.0000245819.32762.cb
  15. Golledge J, 2019, NAT REV CARDIOL, V16, P225, DOI 10.1038/s41569-018-0114-9
  16. Hannawa KK, 2009, VASCULAR, V17, pS30, DOI 10.2310/6670.2008.00092
  17. Herring B. Paul, 1996, American Journal of Physiology, V270, pC1656
  18. Hinterseher I, 2013, PATHOBIOLOGY, V80, P1, DOI 10.1159/000339303
  19. Hoffmann C, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-28637-x
  20. Hoffmann C, 2016, ONCOTARGET, V7, P13688, DOI 10.18632/oncotarget.7327
  21. IMPROVE Trial Investigators, 2017, BMJ, V359, pj4859, DOI 10.1136/bmj.j4859
  22. JOHNSTON KW, 1991, J VASC SURG, V13, P452, DOI 10.1067/mva.1991.26737
  23. Johnston WF, 2013, ARTERIOSCL THROM VAS, V33, P294, DOI 10.1161/ATVBAHA.112.300432
  24. Katz DJ, 1997, J VASC SURG, V25, P561, DOI 10.1016/S0741-5214(97)70268-4
  25. Lederle FA, 2000, ARCH INTERN MED, V160, P1425, DOI 10.1001/archinte.160.10.1425
  26. Lederle FA, 2001, J VASC SURG, V34, P122, DOI 10.1067/mva.2001.115275
  27. Li GX, 2017, AM J PHYSIOL-HEART C, V312, pH1110, DOI 10.1152/ajpheart.00677.2016
  28. Lilly B, 2010, ARTERIOSCL THROM VAS, V30, P694, DOI 10.1161/ATVBAHA.109.200741
  29. Lindeman JHN, 2011, CIRCULATION, V124, pE463, DOI 10.1161/CIRCULATIONAHA.110.008573
  30. Matsumoto KI, 2014, INT J MOL MED, V33, P1035, DOI 10.3892/ijmm.2014.1627
  31. Meng X, 2014, HYPERTENSION, V64, P875, DOI 10.1161/HYPERTENSIONAHA.114.03950
  32. Norman PE, 1998, BMJ-BRIT MED J, V317, P852, DOI 10.1136/bmj.317.7162.852
  33. Patel R, 2016, LANCET, V388, P2366, DOI 10.1016/S0140-6736(16)31135-7
  34. Pearce WH, 1996, ANN NY ACAD SCI, V800, P175
  35. Sakalihasani N, 2018, NAT REV DIS PRIMERS, V4, DOI 10.1038/s41572-018-0030-7
  36. Tanaka A, 2009, J VASC SURG, V50, P1423, DOI 10.1016/j.jvs.2009.08.062
  37. Thomas M, 2006, CIRCULATION, V114, P404, DOI 10.1161/CIRCULATIONAHA.105.607168
  38. Varadarajulu J, 2005, BIOCHEM BIOPH RES CO, V331, P404, DOI 10.1016/j.bbrc.2005.03.175
  39. Wang KC, 2015, ARTERIOSCL THROM VAS, V35, P2412, DOI 10.1161/ATVBAHA.115.305529
  40. Wang XH, 2006, J MOL CELL CARDIOL, V40, P503, DOI 10.1016/j.yjmcc.2006.01.005
  41. Weiskirchen R, 2003, BIOESSAYS, V25, P152, DOI 10.1002/bies.10226
  42. Yamashita O, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079753
  43. Zogbi C, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-69413-0