Mesothelin expression remodeled the immune-matrix tumor microenvironment predicting the risk of death in patients with malignant pleural mesothelioma

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN IMMUNOLOGY, v.14, article ID 1268927, 17p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundThe combination of immunobiological agents with immune checkpoint proteins is a promising treatment for malignant pleural mesothelioma (MPM). Mesothelin and anti-PD-L1 antibody-drug conjugates specifically target malignant neoplastic cells, inhibit the migration and invasion of neoplastic cells, and restore the immune landscape. In this study, we confirmed the importance of mesothelin and examined the relationship between mesothelin and the immune landscape of the tumor microenvironment (TME) in two MPM cohorts.MethodsThe discovery cohort included 82 MPM cases. Tissue microarray slides were generated, and samples were processed for hematoxylin & eosin staining, immunohistochemistry, and immunofluorescence assays. The relationship between mesothelin, biomarkers of histogenesis, histological aggressiveness, PD-L1, immune cells (CD4, CD8, CD20, CD68), and collagen type I and type V fibers was evaluated by quantitative digital analyses. The outcome was the survival time until death from disease recurrence. The exploratory cohort included 87 malignant mesothelioma (MESO) patients from The Cancer Genome Atlas database.ResultsMost patients were male (70.7%) with a history of asbestos exposure (53.7%) and with the epithelioid subtype (89%). Surgical resection was performed in 85.4% of patients, and 14.6% received chemotherapy; 59.8% of patients died from disease extension to the mediastinum. Low tumor mesothelin expression was associated with tumor necrosis and nuclear grade 1, whereas high mesothelin expression was significantly associated with the epithelioid histotype and high density of T cells CD8+, macrophages CD68+, and collagen type I fibers. Cox multivariate analysis showed a high risk of death for non-operated patients [hazard ratio (HR), 3.42 (1.15-10.16)] with low tumor mesothelin levels [HR, 2.58 (1.09-6.10)] and high PD-L1 and low infiltration of T cells CD4+ [HR, 3.81 (1.58-9.18)]. In the exploratory cohort, low mesothelin and high COL1A1 and COL5A1 expression were associated with poor overall survival.ConclusionTumor mesothelin expression associated with the TME immune landscape predicts the risk of death for patients with MPM and could be a new target for immunotherapy in MPM.
Palavras-chave
malignant mesothelioma, mesothelin, PD-L1, immune cells, computational quantification, immunohistochemistry
Referências
  1. [Anonymous], Keytruda® (pembrolizumab) plus chemotherapy significantly improved overall survival versus chemotherapy alone as first-line treatment for advanced Malignant pleural mesothelioma. News release. Merck
  2. Baas P, 2021, LANCET, V397, P375, DOI 10.1016/S0140-6736(20)32714-8
  3. Bankhead P, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-17204-5
  4. Bharadwaj U, 2011, MOL CANCER, V10, DOI 10.1186/1476-4598-10-106
  5. Bibby AC, 2016, EUR RESPIR REV, V25, P472, DOI 10.1183/16000617.0063-2016
  6. Borea F, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24119165
  7. Borgeaud M, 2023, J CLIN MED, V12, DOI 10.3390/jcm12051757
  8. BRETAGNOLLE J, 1988, SCAND J STAT, V15, P125
  9. Broaddus VC, 1996, J CLIN INVEST, V98, P2050, DOI 10.1172/JCI119010
  10. Carbone M, 2017, ANN TRANSL MED, V5, DOI 10.21037/atm.2017.04.29
  11. Carmona R, 2011, J CELL MOL MED, V15, P1200, DOI 10.1111/j.1582-4934.2010.01087.x
  12. Cerami E, 2012, CANCER DISCOV, V2, P401, DOI 10.1158/2159-8290.CD-12-0095
  13. Chandrashekar DS, 2017, NEOPLASIA, V19, P649, DOI 10.1016/j.neo.2017.05.002
  14. Chandrashekar DS, 2022, NEOPLASIA, V25, P18, DOI 10.1016/j.neo.2022.01.001
  15. Chang K, 1996, P NATL ACAD SCI USA, V93, P136, DOI 10.1073/pnas.93.1.136
  16. Chu QY, 2023, CURR ONCOL REP, V25, P309, DOI 10.1007/s11912-023-01367-8
  17. Gao JJ, 2013, SCI SIGNAL, V6, DOI 10.1126/scisignal.2004088
  18. Goldman MJ, 2020, NAT BIOTECHNOL, V38, P675, DOI 10.1038/s41587-020-0546-8
  19. Goudar Ranjit K, 2008, Ther Clin Risk Manag, V4, P205
  20. Grasso L, 2023, EUR J IMMUNOL, DOI 10.1002/eji.202250309
  21. Hager T, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24076356
  22. Hassan R, 2004, CLIN CANCER RES, V10, P3937, DOI 10.1158/1078-0432.CCR-03-0801
  23. Hassan R, 2007, CLIN CANCER RES, V13, P5144, DOI 10.1158/1078-0432.CCR-07-0869
  24. Hassan R, 2020, CANCER-AM CANCER SOC, V126, P4936, DOI 10.1002/cncr.33145
  25. Hassan R, 2013, SCI TRANSL MED, V5, DOI 10.1126/scitranslmed.3006941
  26. Hatterer E, 2020, MABS-AUSTIN, V12, DOI 10.1080/19420862.2020.1739408
  27. He XQ, 2017, MOL CANCER, V16, DOI 10.1186/s12943-017-0633-8
  28. Ho M, 2005, CLIN CANCER RES, V11, P3814, DOI 10.1158/1078-0432.CCR-04-2304
  29. Kondola S, 2016, THER ADV RESPIR DIS, V10, P275, DOI 10.1177/1753465816628800
  30. Kreitman RJ, 2009, CLIN CANCER RES, V15, P5274, DOI 10.1158/1078-0432.CCR-09-0062
  31. Krug LM, 2010, CANCER IMMUNOL IMMUN, V59, P1467, DOI 10.1007/s00262-010-0871-8
  32. Kulkarni NS, 2022, LIFE SCI, V304, DOI 10.1016/j.lfs.2022.120716
  33. Lacourt A, 2014, THORAX, V69, P532, DOI 10.1136/thoraxjnl-2013-203744
  34. Lanitis E, 2012, MOL THER, V20, P633, DOI 10.1038/mt.2011.256
  35. Le DT, 2012, CLIN CANCER RES, V18, P858, DOI 10.1158/1078-0432.CCR-11-2121
  36. Ledda C, 2018, CANCERS, V10, DOI 10.3390/cancers10060203
  37. Liu Z, 2003, THORAX, V58, P198, DOI 10.1136/thorax.58.3.198
  38. Mairinger F, 2013, J THORAC ONCOL, V8, pE80, DOI 10.1097/JTO.0b013e31829b1cf9
  39. Mairinger F, 2013, J THORAC ONCOL, V8, P644, DOI 10.1097/JTO.0b013e318287c224
  40. Pass HI, 2020, THORAC SURG CLIN, V30, P395, DOI 10.1016/j.thorsurg.2020.08.001
  41. Ramalingam SS, 2008, J THORAC ONCOL, V3, P1056, DOI 10.1097/JTO.0b013e3181834f66
  42. Rihs HP, 2022, BIOLOGY-BASEL, V11, DOI 10.3390/biology11121826
  43. Schuberth PC, 2013, J TRANSL MED, V11, DOI 10.1186/1479-5876-11-187
  44. Snel B, 2000, NUCLEIC ACIDS RES, V28, P3442, DOI 10.1093/nar/28.18.3442
  45. Stahel RA, 2015, ANN ONCOL, V26, P1649, DOI 10.1093/annonc/mdv101
  46. Szklarczyk D, 2021, NUCLEIC ACIDS RES, V49, pD605, DOI 10.1093/nar/gkaa1074
  47. Thomas AM, 2004, J EXP MED, V200, P297, DOI 10.1084/jem.20031435
  48. Tian L, 2017, ONCOTARGET, V8, P46425, DOI 10.18632/oncotarget.17436
  49. Tomasetti M, 2023, BMC RES NOTES, V16, DOI 10.1186/s13104-023-06330-1
  50. Tomek S, 2004, LUNG CANCER, V45, pS103, DOI 10.1016/j.lungcan.2004.04.020
  51. Tomek S, 2003, BRIT J CANCER, V88, P167, DOI 10.1038/sj.bjc.6600673
  52. Vorobiof DA, 2009, CLIN LUNG CANCER, V10, P112, DOI 10.3816/CLC.2009.n.014
  53. Weidemann S, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9040397
  54. YAMAGUCHI N, 1994, J BIOL CHEM, V269, P805
  55. Zhang JL, 2012, ANTICANCER RES, V32, P5151