Analysis of biliary MICRObiota in hepatoBILIOpancreatic diseases compared to healthy people [MICROBILIO]: Study protocol

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Citação
PLOS ONE, v.15, n.11, article ID e0242553, 11p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background The performance of the microbiota is observed in several digestive tract diseases. Therefore, reaching the biliary microbiota may suggest ways for studies of biomarkers, diagnoses, tests and therapies in hepatobiliopancreatic diseases. Methods Bile samples will be collected in endoscopic retrograde cholangiopancreatography patients (case group) and living liver transplantation donors (control group). We will characterize the microbiome based on two types of sequence data: the V3/V4 regions of the 16S ribosomal RNA (rRNA) gene and total shotgun DNA. For 16S sequencing data a standard 16S processing pipeline based on the Amplicon Sequence Variant concept and the qiime2 software package will be employed; for shotgun data, for each sample we will assemble the reads and obtain and analyze metagenome-assembled genomes. Results The primary expected results of the study is to characterize the specific composition of the biliary microbiota in situations of disease and health. In addition, it seeks to demonstrate the existence of changes in the case of illness and also possible disease biomarkers, diagnosis, interventions and therapies in hepatobiliopancreatic diseases. Trial registration NCT04391426. Registered 18 May 2020, https://clinicaltrials.gov/ct2/show/NCT04391426.
Palavras-chave
Referências
  1. Akshintala VS, 2019, CLIN GASTROENTEROL H, V17, P290, DOI 10.1016/j.cgh.2018.08.045
  2. Amir A, 2017, MSYSTEMS, V2, DOI 10.1128/mSystems.00199-16
  3. Aykut B, 2019, NATURE, V574, P264, DOI 10.1038/s41586-019-1608-2
  4. Bolyen E, 2019, NAT BIOTECHNOL, V37, P1091, DOI 10.1038/s41587-019-0252-6
  5. Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/NMETH.3869, 10.1038/nmeth.3869]
  6. Chen BR, 2019, BIOMED RES INT, V2019, DOI 10.1155/2019/1092563
  7. Cresci GA, 2015, NUTR CLIN PRACT, V30, P734, DOI 10.1177/0884533615609899
  8. Desrouilleres K, 2020, J FOOD BIOCHEM, V44, DOI 10.1111/jfbc.13195
  9. Escapa IF, 2018, MSYSTEMS, V3, DOI 10.1128/mSystems.00187-18
  10. Gao ZG, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00020
  11. Haro C, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154090
  12. Iida N, 2013, SCIENCE, V342, P967, DOI 10.1126/science.1240527
  13. Lenoir M, 2016, J GASTROENTEROL, V51, P862, DOI 10.1007/s00535-015-1158-9
  14. Mandal Siddhartha, 2015, Microbial Ecology in Health and Disease, V26, P27663, DOI 10.3402/mehd.v26.27663
  15. Mendez R, 2020, CARCINOGENESIS, V41, P561, DOI 10.1093/carcin/bgz116
  16. Mima K, 2017, CANCER LETT, V402, P9, DOI 10.1016/j.canlet.2017.05.001
  17. Mitsuhashi K, 2015, ONCOTARGET, V6, P7209, DOI 10.18632/oncotarget.3109
  18. Molinero N, 2019, MICROBIOME, V7, DOI 10.1186/s40168-019-0712-8
  19. Nicoletti A, 2020, EUR REV MED PHARMACO, V24, P2750, DOI 10.26355/eurrev_202003_20548
  20. Oksanen J., 2013, R PACKAGE VERSION, V2, P3, DOI 10.4135/9781412971874.N145
  21. Parks DH, 2018, NAT BIOTECHNOL, V36, P996, DOI 10.1038/nbt.4229
  22. Riquelme E, 2019, CELL, V178, P795, DOI 10.1016/j.cell.2019.07.008
  23. Saus E, 2019, MOL ASPECTS MED, V69, P93, DOI 10.1016/j.mam.2019.05.001
  24. Sender R, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002533
  25. Shen HZ, 2015, SCI REP-UK, V5, DOI 10.1038/srep17450
  26. Tatusova T, 2016, NUCLEIC ACIDS RES, V44, P6614, DOI 10.1093/nar/gkw569
  27. Uritskiy GV, 2018, MICROBIOME, V6, DOI 10.1186/s40168-018-0541-1
  28. Wong SH, 2019, NAT REV GASTRO HEPAT, V16, P690, DOI 10.1038/s41575-019-0209-8
  29. Wood DE, 2019, GENOME BIOL, V20, DOI 10.1186/s13059-019-1891-0