Zika Virus Infects Newborn Monocytes Without Triggering a Substantial Cytokine Response

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS INC
Citação
JOURNAL OF INFECTIOUS DISEASES, v.220, n.1, p.32-40, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Zika virus (ZIKV) is a clinically important flavivirus that can cause neurological disturbances in newborns. Here, we investigated comparatively the outcome of in vitro infection of newborn monocytes by ZIKV. We observed that neonatal cells show defective production of interleukin 1 beta, interleukin 10, and monocyte chemoattractant protein 1 in response to ZIKV, although they were as efficient as adult cells in supporting viral infection. Although CLEC5A is a classical flavivirus immune receptor, it is not essential to the cytokine response, but it regulates the viral load only in adult cells. Greater expression of viral entry receptors may create a favorable environment for viral invasion in neonatal monocytes. We are the first to suggest a role for CLEC5A in human monocyte infectivity and to show that newborn monocytes are interesting targets in ZIKV pathogenesis, owing to their ability to carry the virus with only a partial triggering of the immune response, creating a potentially favorable environment for virus-related pathologies in young individuals.
Palavras-chave
Zika virus, flavivirus, viral entry receptors, newborn, monocytes
Referências
  1. Aarreberg LD, 2018, MBIO, V9, DOI 10.1128/mBio.00342-18
  2. Castillo JA, 2019, ARCH IMMUNOL THER EX, V67, P27, DOI 10.1007/s00005-018-0525-7
  3. Bakker ABH, 1999, P NATL ACAD SCI USA, V96, P9792, DOI 10.1073/pnas.96.17.9792
  4. Bayer A, 2016, CELL HOST MICROBE, V19, P705, DOI 10.1016/j.chom.2016.03.008
  5. Bordi L, 2017, ADV EXP MED BIOL, V972, P61, DOI 10.1007/5584_2016_187
  6. Chen ST, 2008, NATURE, V453, P672, DOI 10.1038/nature07013
  7. Chen ST, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00356-3
  8. Chen ST, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002655
  9. Cheung R, 2011, J CLIN INVEST, V121, P4446, DOI [10.1172/JC157682, 10.1172/JCI57682]
  10. Dasari P, 2011, PEDIAT ALLERG IMM-UK, V22, P221, DOI 10.1111/j.1399-3038.2010.01091.x
  11. Faria NR, 2016, SCIENCE, V352, P345, DOI 10.1126/science.aaf5036
  12. Foo SS, 2017, NAT MICROBIOL, V2, P1558, DOI 10.1038/s41564-017-0016-3
  13. Gaidt MM, 2016, IMMUNITY, V44, P833, DOI 10.1016/j.immuni.2016.01.012
  14. Grant A, 2016, CELL HOST MICROBE, V19, P882, DOI 10.1016/j.chom.2016.05.009
  15. Hamel R, 2015, J VIROL, V89, P8880, DOI 10.1128/JVI.00354-15
  16. Henao-Mejia J, 2012, NAT IMMUNOL, V13, P321, DOI 10.1038/ni.2257
  17. Jiao QJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027646
  18. Jurado KA, 2017, NAT MICROBIOL, V2, P1460, DOI 10.1038/s41564-017-0049-7
  19. Kim SY, 2017, PHARMACEUTICALS, V10, DOI 10.3390/ph10020044
  20. Kollmann TR, 2017, IMMUNITY, V46, P350, DOI 10.1016/j.immuni.2017.03.009
  21. Lo YL, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166474
  22. Lum FM, 2018, MSPHERE, V3, DOI [10.1128/mSphereDirect.00120-18, 10.1128/mspheredirect.00120-18]
  23. Mavigner M, 2018, SCI TRANSL MED, V10, DOI 10.1126/scitranslmed.aao6975
  24. McGrath-Morrow SA, 2018, J BIOL CHEM, V293, P11772, DOI 10.1074/jbc.RA118.003589
  25. Michlmayr D, 2017, NAT MICROBIOL, V2, P1462, DOI 10.1038/s41564-017-0035-0
  26. Naveca FG, 2018, MEM I OSWALDO CRUZ, V113, DOI 10.1590/0074-02760170542
  27. Nazmi A, 2014, VIRUS RES, V185, P32, DOI 10.1016/j.virusres.2014.03.013
  28. Neal JW, 2014, J INFECTION, V69, P203, DOI 10.1016/j.jinf.2014.05.010
  29. Netea MG, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000661
  30. Nikitina E, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19092821
  31. Normann E, 2010, AM J REPROD IMMUNOL, V63, P66, DOI 10.1111/j.1600-0897.2009.00767.x
  32. Nowakowski TJ, 2016, CELL STEM CELL, V18, P591, DOI 10.1016/j.stem.2016.03.012
  33. Patel AA, 2017, J EXP MED, V214, P1913, DOI 10.1084/jem.20170355
  34. Perry H, 2017, BRIT MED BULL, V124, P157, DOI 10.1093/bmb/ldx038v1
  35. Plato A, 2015, SEMIN IMMUNOPATHOL, V37, P97, DOI 10.1007/s00281-014-0462-4
  36. ROTH P, 1992, J PEDIATR-US, V121, P285, DOI 10.1016/S0022-3476(05)81205-3
  37. Shan C, 2018, CELL HOST MICROBE, V24, P12, DOI 10.1016/j.chom.2018.05.021
  38. Slavica L, 2013, J LEUKOCYTE BIOL, V94, P1003, DOI 10.1189/jlb.1212617
  39. Sun XM, 2017, CELL REP, V21, P3471, DOI 10.1016/j.celrep.2017.11.087
  40. Tabata T, 2016, CELL HOST MICROBE, V20, P155, DOI 10.1016/j.chom.2016.07.002
  41. Tappe D, 2016, MED MICROBIOL IMMUN, V205, P269, DOI 10.1007/s00430-015-0445-7
  42. Teng OIE, 2017, J VIROL, V91, DOI 10.1128/JVI.01813-16
  43. Torrentes-Carvalho A, 2009, MEM I OSWALDO CRUZ, V104, P1091, DOI 10.1590/S0074-02762009000800005
  44. Valero N, 2014, VIRAL IMMUNOL, V27, P151, DOI 10.1089/vim.2013.0123
  45. Waldorf KMA, 2018, NAT MED, V24, P368, DOI 10.1038/nm.4485
  46. Walter LT, 2018, MOL NEUROBIOL, V55, P1620, DOI 10.1007/s12035-017-0442-5
  47. Wang WB, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02645-3
  48. Watson AA, 2011, J BIOL CHEM, V286, P24208, DOI 10.1074/jbc.M111.226142
  49. Wu MF, 2013, BLOOD, V121, P95, DOI 10.1182/blood-2012-05-430090
  50. Zhang Y, 2012, J LEUKOCYTE BIOL, V91, P189, DOI 10.1189/jlb.1010591