1,5-Anhydroglucitol predicts CKD progression in macroalbuminuric diabetic kidney disease: results from non-targeted metabolomics

Carregando...
Imagem de Miniatura
Citações na Scopus
22
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
METABOLOMICS, v.14, n.4, article ID 39, 9p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction Metabolomics allows exploration of novel biomarkers and provides insights on metabolic pathways associated with disease. To date, metabolomics studies on CKD have been largely limited to Caucasian populations and have mostly examined surrogate end points. Objective In this study, we evaluated the role of metabolites in predicting a primary outcome defined as dialysis need, doubling of serum creatinine or death in Brazilian macroalbuminuric DKD patients. Methods Non-targeted metabolomics was performed on plasma from 56 DKD patients. Technical triplicates were done. Metabolites were identified using Agilent Fiehn GC/MS Metabolomics and NIST libraries (Agilent MassHunter Work-station Quantitative Analysis, version B. 06.00). After data cleaning, 186 metabolites were left for analyses. Results During a median follow-up time of 2.5 years, the PO occurred in 17 patients (30.3%). In non-parametric testing, 13 metabolites were associated with the PO. In univariate Cox regression, only 1,5-anhydroglucitol (HR 0.10; 95% CI 0.01-0.63, p =.01), norvaline and l-aspartic acid were associated with the PO. After adjustment for baseline renal function, 1,5-anhydroglucitol (HR 0.10; 95% CI 0.02-0.63, p =.01), norvaline (HR 0.01; 95% CI 0.001-0.4, p =.01) and aspartic acid (HR 0.12; 95% CI 0.02-0.64, p =.01) remained significantly and inversely associated with the PO. Conclusion Our results show that lower levels of 1,5-anhydroglucitol, norvaline and l-aspartic acid are associated with progression of macroalbuminuric DKD. While norvaline and l-aspartic acid point to interesting metabolic pathways, 1,5-anhydroglucitol is of particular interest since it has been previously shown to be associated with incident CKD. This inverse biomarker of hyperglycemia should be further explored as a new tool in DKD.
Palavras-chave
Diabetic kidney disease, Metabolomics, 1,5-Anhydroglucitol
Referências
  1. Afshinnia F, 2018, J AM SOC NEPHROL, V29, P295, DOI 10.1681/ASN.2017030350
  2. Buse John B, 2003, Diabetes Technol Ther, V5, P355, DOI 10.1089/152091503765691839
  3. Chen H, 2017, J PROTEOME RES, V16, P1566, DOI 10.1021/acs.jproteome.6b00956
  4. Chen H, 2016, REDOX BIOL, V10, P168, DOI 10.1016/j.redox.2016.09.014
  5. Chen H, 2014, ADV CLIN CHEM, V66, P101, DOI 10.1016/B978-0-12-801401-1.00004-9
  6. Cisek K, 2016, NEPHROL DIAL TRANSPL, V31, P2003, DOI 10.1093/ndt/gfv364
  7. Dungan KM, 2006, DIABETES CARE, V29, P1214, DOI 10.2337/dc06-1910
  8. Duranton F, 2014, CLIN J AM SOC NEPHRO, V9, P37, DOI 10.2215/CJN.06000613
  9. El Assar M, 2016, J PHYSIOL-LONDON, V594, P3045, DOI 10.1113/JP271836
  10. El-Bassossy HM, 2013, BRIT J PHARMACOL, V169, P693, DOI 10.1111/bph.12144
  11. Fiehn O., 2016, CURR PROTOC MOL BIOL, V114, P30
  12. Goek ON, 2013, NEPHROL DIAL TRANSPL, V28, P2131, DOI 10.1093/ndt/gft217
  13. Goek ON, 2012, AM J KIDNEY DIS, V60, P197, DOI 10.1053/j.ajkd.2012.01.014
  14. Hasslacher C, 2016, J DIABETES, V8, P712, DOI 10.1111/1753-0407.12354
  15. Hirayama A, 2012, ANAL BIOANAL CHEM, V404, P3101, DOI 10.1007/s00216-012-6412-x
  16. Hocher B, 2017, NAT REV NEPHROL, V13, P269, DOI 10.1038/nrneph.2017.30
  17. Ikeda N, 2015, INT HEART J, V56, P587, DOI 10.1536/ihj.15-177
  18. Ikeda N, 2014, J CARDIOL, V64, P297, DOI [10.1016/j.jjcc.2014.02.014, 10.1016/Acc.2014.02.014]
  19. Ishii N, 2004, METABOLISM, V53, P868, DOI 10.1016/j.metabol.2004.02.011
  20. Kim WJ, 2012, DIABETES CARE, V35, P281, DOI 10.2337/dc11-1462
  21. KISHIMOTO M, 1995, DIABETES CARE, V18, P1156, DOI 10.2337/diacare.18.8.1156
  22. Kovamees O, 2016, J INTERN MED, V279, P477, DOI 10.1111/joim.12461
  23. Kovamees O., 2016, J CLIN ENDOCRINOLOGY
  24. Lee J, 2016, CLIN CHIM ACTA, V459, P123, DOI 10.1016/j.cca.2016.05.018
  25. Levey AS, 2009, ANN INTERN MED, V150, P604, DOI 10.7326/0003-4819-150-9-200905050-00006
  26. Liang ML, 2016, DIABETES CARE, V39, P1752, DOI 10.2337/dc16-0840
  27. McMahon GM, 2017, KIDNEY INT, V91, P1426, DOI 10.1016/j.kint.2017.01.007
  28. Mika A, 2018, J PHARMACEUT BIOMED, V149, P1, DOI 10.1016/j.jpba.2017.10.037
  29. Ming XF, 2004, CIRCULATION, V110, P3708, DOI 10.1161/01.CIR.0000142867.26182.32
  30. Ming XF, 2009, BMC CARDIOVASC DISOR, V9, DOI 10.1186/1471-2261-9-12
  31. Mutsaers HAM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071199
  32. Niewczas MA, 2017, DIABETES CARE, V40, P383, DOI 10.2337/dc16-0173
  33. Niewczas MA, 2014, KIDNEY INT, V85, P1214, DOI 10.1038/ki.2013.497
  34. Nkuipou-Kenfack E, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096955
  35. Pokrovskiy MV, 2011, INT J HYPERTENS, DOI 10.4061/2011/515047
  36. Rhee EP, 2016, AM J NEPHROL, V43, P366, DOI 10.1159/000446484
  37. Rhee EP, 2013, J AM SOC NEPHROL, V24, P1330, DOI 10.1681/ASN.2012101006
  38. Romero MJ, 2012, AM J PHYSIOL-HEART C, V302, pH159, DOI 10.1152/ajpheart.00774.2011
  39. SAHEKI T, 1979, J BIOCHEM-TOKYO, V86, P745, DOI 10.1093/oxfordjournals.jbchem.a132579
  40. Sato T, 2014, J DIABETES COMPLICAT, V28, P348, DOI 10.1016/j.jdiacomp.2014.01.004
  41. Sekula P, 2016, J AM SOC NEPHROL, V27, P1175, DOI 10.1681/ASN.2014111099
  42. Selvin E, 2016, DIABETES, V65, P201, DOI 10.2337/db15-0607
  43. Selvin E, 2014, CLIN CHEM, V60, P1409, DOI 10.1373/clinchem.2014.229427
  44. Shah VO, 2013, CLIN J AM SOC NEPHRO, V8, P363, DOI 10.2215/CJN.05540512
  45. Sharma K, 2013, J AM SOC NEPHROL, V24, P1901, DOI 10.1681/ASN.2013020126
  46. Shemyakin A, 2012, CIRCULATION, V126, P2943, DOI 10.1161/CIRCULATIONAHA.112.140335
  47. Tazawa S, 2005, LIFE SCI, V76, P1039, DOI 10.1016/j.lfs.2004.10.016
  48. Titan SM, 2011, CLIN NEPHROL, V76, P273, DOI 10.5414/CN107013
  49. Toyohara T, 2010, HYPERTENS RES, V33, P944, DOI 10.1038/hr.2010.113
  50. Vaarhorst AAM, 2014, AM HEART J, V168, P45, DOI [10.1016/j.ahj.2014.019, 10.1016/j.ahj.2014.01.019]
  51. Vaisman BL, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039487
  52. Watanabe M, 2011, ATHEROSCLEROSIS, V216, P477, DOI 10.1016/j.atherosclerosis.2011.02.033
  53. Weiss RH, 2012, NAT REV NEPHROL, V8, P22, DOI 10.1038/nrneph.2011.152
  54. Yu B, 2014, CLIN J AM SOC NEPHRO, V9, P1410, DOI 10.2215/CJN.11971113
  55. Zhao YY, 2015, CHEM-BIOL INTERACT, V240, P220, DOI 10.1016/j.cbi.2015.09.005
  56. Zhao YY, 2015, ADV CLIN CHEM, V68, P153, DOI 10.1016/bs.acc.2014.11.002
  57. Zhao YY, 2014, CHEM-BIOL INTERACT, V220, P181, DOI 10.1016/j.cbi.2014.06.029
  58. Zhao YY, 2014, CLIN BIOCHEM, V47, P16, DOI 10.1016/j.clinbiochem.2014.07.019
  59. Zhao YY, 2013, CLIN CHIM ACTA, V422, P59, DOI 10.1016/j.cca.2013.03.033