Experimental models for identifying target events in vascular injury

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
bookPart
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Citação
Girão-Silva, T.; Miyakawa, A. A.; Lacchini, S.. Experimental models for identifying target events in vascular injury. In: . ENDOTHELIAL SIGNALING IN VASCULAR DYSFUNCTION AND DISEASE: FROM BENCH TO BEDSIDE: ELSEVIER, 2021. p.179-193.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The development of experimental models represent an excellent tool for the study and understanding of arterial and venous injuries associated with vascular pathologies as diverse as atherosclerosis and transplant rejection. With these models it was possible to understand the interference of the environment on vascular biology as well as to identify the the role of several regulatory factors from the initiation to the formation of complex lesions as atherosclerosis. The increase in hemodynamic forces, especially flow and pressure, triggers endothelial damage in the vascular bed, leading to vascular remodeling and ultimately to graft failure. In this chapter, we describe several experimental models available for in vivo, in vitro, and ex vivo studies. So far, many advances have been made, but more research is still needed. Due to methodological limitations, a multipronged approach is necessary for a comprehensive understanding of the mechanisms involved with vascular diseases, especially in the processes of stenosis, restenosis, and venous graft occlusion. © 2021 Elsevier Inc. All rights reserved.
Palavras-chave
Atherosclerosis, Cuff-induced injury, Inflammation, Neointima, Shear stress, Vein graft disease
Referências
  1. Geovanini, G.R., Libby, P., Atherosclerosis and inflammation: Overview and updates (2018) ClinSci (Lond), 132 (12), pp. 1243-1252
  2. Zhao, T.X., Mallat, Z., Targeting the immune system in atherosclerosis: JACC state-of-the-art review (2019) J Am Coll Cardiol, 13 (73), pp. 1691-1706
  3. Ignatowski, A.C., Influence of animal food on the organism of rabbits (1908) S Peterb Izviest Imp Voyenno-Med Akad, 16, pp. 154-173
  4. Fan, J., Chen, Y., Yan, H., Niimi, M., Wang, Y., Liang, J., Principles and applications of rabbit models for atherosclerosis research (2018) J Atheroscler Thromb, 25, pp. 213-220
  5. Owsiany, K.M., Alencar, G.F., Owens, G.K., Revealing the origins of foam cells in atherosclerotic lesions (2019) Arterioscler Thromb Vasc Biol, 39 (5), pp. 836-838
  6. Fan, J., Kitajima, S., Watanabe, T., Xu, J., Zhang, J., Liu, E., Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine (2015) Pharmacol Ther, 146, pp. 104-119
  7. Booth, R.F.G., Martin, J.F., Honey, A.C., Hassall, D.G., Beesley, J.E., Moncada, S., Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation (1989) Atherosclerosis., 16, pp. 257-268
  8. Kobayashi, T., Ito, T., Shiomi, M., Roles of the WHHL rabbit in translational research on hypercholesterolemia and cardiovascular diseases (2011) J Biomed Biotechnol, 2011, p. 406473
  9. Polak, J.F., Pencina, M.J., Pencina, K.M., O’Donnell, C.J., Wolf, P.A., D’Agostino, R.B., Carotid-wall intima-media thickness and cardiovascular events (2011) N Engl J Med, 365 (3), pp. 213-221
  10. Wada, S., Koga, M., Minematsu, K., Toyoda, K., Suzuki, R., Kagimura, T., Baseline carotid intima-media thickness and stroke recurrence during secondary prevention with pravastatin (2019) Stroke., , https://doi.org/10.1161/STROKEAHA.119.024968
  11. von Scheidt, M., Zhao, Y., Kurt, Z., Pan, C., Zeng, L., Yang, X., Applications and limitations of mouse models for understanding human atherosclerosis (2017) Cell Metab., 25, pp. 248-261
  12. Santana, A.B., de Souza Oliveira, T.C., Bianconi, B.L., Barauna, V.G., Santos, E.W., Alves, T.P., Effect of high-fat diet upon inflammatory markers and aortic stiffening in mice (2014) Biomed Res Int, 2014, p. 914102
  13. Maeda, N., Development of apolipoprotein E-deficient mice (2011) Arterioscler Thromb Vasc Biol, 31 (9), pp. 1957-1962
  14. Ishibashi, S., Goldstein, J.L., Brown, M.S., Herz, J., Burns, D.K., Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice (1994) J Clin Invest, 93, pp. 1885-1893
  15. Plump, A.S., Smith, J.D., Hayek, T., Aalto-Setälä, K., Walsh, A., Verstuyft, J.G., Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells (1992) Cell., 71, pp. 343-353
  16. Veseli, B.E., Perrotta, P., De Meyer, G.R.A., Roth, L., van der Donckt, C., Martinet, W., Animal models of atherosclerosis (2017) Eur J Pharmacol, 816, pp. 3-13
  17. Durham, A.L., Speer, M.Y., Scatena, M., Giachelli, C.M., Shanahan, C.M., Role of smooth muscle cells in vascular calcification: Implications in atherosclerosis and arterial stiffness (2018) Cardiovasc Res, 114 (4), pp. 590-600
  18. Lusis, A.J., Atherosclerosis (2000) Nature., 407 (6801), pp. 233-241
  19. Hirosumi, J., Nomoto, A., Ohkubo, Y., Sekiguchi, C., Mutoh, S., Yamaguchi, I., Inflammatoryresponses in cuff-induced atherosclerosis in rabbits (1987) Atherosclerosis, 64 (2-3), pp. 243-254
  20. Nomoto, A., Hirosumi, J., Sekiguchi, C., Mutoh, S., Yamaguchi, I., Aoki, H., Antiatherogenicactivity of FR34235 (Nilvadipine), a new potent calcium antagonist. Effect on cuff-induced intimal thickening of rabbit carotid artery (1987) Atherosclerosis., 64 (2-3), pp. 255-261
  21. De Meyer, G.R., Bult, H., Herman, A.G., Early atherosclerosis is accompanied by a decreased rather than an increased accumulation of fatty acid hydroxyderivatives (1991) Biochem Pharmacol, 42 (2), pp. 279-283
  22. Kockx, M.M., De Meyer, G.R., Andries, L.J., Bult, H., Jacob, W.A., Herman, A.G., The endothelium during cuff-induced neointima formation in the rabbitcarotidartery (1993) Arterioscler Thromb, 13 (12), pp. 1874-1884
  23. Kockx, M.M., De Meyer, G.R., Jacob, W.A., Bult, H., Herman, A.G., Triphasic sequence of neointimalformation in the cuffed carotid artery of the rabbit (1992) Arterioscler Thromb, 12 (12), pp. 1447-1457
  24. Akishita, M., Ouchi, Y., Miyoshi, H., Kozaki, K., Inoue, S., Ishikawa, M., Estrogen inhibits cuff-induced intimal thickening of rat femoral artery: Effects on migration and proliferation of vascular smooth muscle cells (1997) Atherosclerosis., 130, pp. 1-10
  25. Akishita, M., Horiuchi, M., Yamada, H., Zhang, L., Shirakami, G., Tamura, K., Inflammation influences vascular remodeling through AT2 receptor expression and signaling (2000) Physiol Genomics, 2 (1), pp. 13-20
  26. Akishita, M., Shirakami, G., Iwai, M., Wu, L., Aoki, M., Zhang, L., Angiotensin converting enzyme inhibitor restrains inflammation-induced vascular injury in mice (2001) J Hypertens, 19 (6), pp. 1083-1088
  27. Inaba, S., Iwai, M., Furuno, M., Kanno, H., Senba, I., Okayama, H., Temporary treatment with AT1 receptor blocker, valsartan, from early stage of hypertension prevented vascular remodeling (2011) Am J Hypertens, 5 (24), pp. 550-556
  28. Lacchini, S., Heimann, A.S., Evangelista, F.S., Cardoso, L., Silva, G.J., Krieger, J.E., Cuff-induced vascular intima thickening is influenced by titration of the Ace gene in mice (2009) Physiol Genomics, 37 (3), pp. 225-230
  29. Pereira, A.C., Morandini Filho, A.A., Heimann, A.S., Rabak, E.T., Vieira, A.P., Mota, G.F., Serum angiotensin converting enzyme activity association with the I/D polymorphism in an ethnically admixtured population (2005) Clin Chim Acta, 360 (1-2), pp. 201-204
  30. Kukida, M., Mogi, M., Ohshima, K., Nakaoka, H., Iwanami, J., Kanno, H., Angiotensin II type 2 receptor inhibits vascular intimal proliferation with activation of PPARγ (2016) Am J Hypertens, 29 (6), pp. 727-736
  31. Ohshima, K., Mogi, M., Nakaoka, H., Iwanami, J., Min, L.J., Kanno, H., Possible role of angiotensin-converting enzyme 2 and activation of angiotensin II type 2 receptorby angiotensin-(1-7) in improvement of vascular remodeling by angiotensin II type 1 receptor blockade (2014) Hypertension., 63 (3), pp. e53-e59
  32. Lima, C.T., Silva, J.C., Viegas, K.A., Oliveira, T.C., Lima, R.S., Souza, L.E., Increase in vascular injury of sodium overloaded mice may be related to vascular angiotensin modulation (2015) PLoS One, 10 (6)
  33. Oshita, A., Iwai, M., Chen, R., Ide, A., Okumura, M., Fukunaga, S., Attenuation of inflammatory vascular remodeling by angiotensin II type 1 receptor-associated protein (2006) Hypertension., 48, pp. 671-676
  34. de Lima, R.S., Silva, J.C.S., Lima, C.T., de Souza, L.E., da Silva, M.B., Baladi, M.G., Proinflammatory role of angiotensin II in the aorta of normotensive mice (2019) Biomed Res Int, 2019, p. 9326896
  35. Gaudino, M., Antoniades, C., Benedetto, U., Deb, S., Di Franco, A., Di Giammarco, G., Mechanisms, consequences, and prevention of coronary graft failure (2017) Circulation., 136 (18), pp. 1749-1764
  36. Joviliano, E.E., Dellalibera-joviliano, R., Celotto, A.C., Capellini, V.K., Dalio, M.B., Picconato, C.E., Pharmacology of the human saphenous vein (2011) Curr Vasc Pharmacol, 9, pp. 501-520
  37. Harskamp, R.E., Lopes, R.D., Baisden, C.E., de Winter, R.J., Alexander, J.H., Saphenous vein graft failure after coronary artery bypass surgery (2013) Ann Surg., 257 (5), pp. 824-833
  38. Allaire, E., Clowes, A.W., Endothelial cell injury in cardiovascular surgery: The intimal hyperplastic response (1997) Ann Thorac Surg, 63 (2), pp. 582-591
  39. Lehoux, S., Castier, Y., Tedgui, A., Molecular mechanisms of the vascular responses to haemodynamic forces (2006) J Intern Med, 259 (4), pp. 381-392
  40. Hsiai, T.K., Wu, J.C., Hemodynamic forces regulate embryonic stem cell commitment to vascular progenitors (2008) Curr Cardiol Rev, 4 (4), pp. 269-274
  41. Soulis, J.V., Farmakis, T.M., Giannoglou, G.D., Louridas, G.E., Wall shear stress in normal left coronary artery tree (2006) J Biomech., 39 (4), pp. 742-749
  42. Dilley, R.J., McGeachie, J.K., Prendergast, F.J., A review of the histologic changes in vein-to-artery grafts, with particular reference to intimal hyperplasia (1988) Arch Surg., 123 (6), pp. 691-696
  43. Conte, M.S., Bandyk, D.F., Clowes, A.W., Moneta, G.L., Seely, L., Lorenz, T.J., Results of PREVENT III: A multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery (2006) J Vasc Surg, 43 (4), pp. 742-751
  44. Golledge, J., Turner, R.J., Harley, S.L., Springall, D.R., Powell, J.T., Circumferential deformation and shear stress induce differential responses in saphenous vein endothelium exposed to arterial flow (1997) J Clin Invest, 99 (11), pp. 2719-2726
  45. Vara, D.S., Punshon, G., Sales, K.M., Hamilton, G., Seifalian, A.M., Haemodynamic regulation of gene expression in vascular tissue engineering (2011) Curr Vasc Pharmacol, 9 (2), pp. 167-187
  46. Van Andel, C.J., Pistecky, P.V., Borst, C., Mechanical properties of porcine and human arteries: Implications for coronary anastomotic connectors (2003) Ann Thorac Surg, 76 (1), pp. 58-64
  47. Epstein, F.H., Gibbons, G.H., Dzau, V.J., The emerging concept of vascular remodeling (2002) N Engl J Med, 330 (20), pp. 1431-1438
  48. Zwolak, R.M., Adams, M.C., Clowes, A.W., Kinetics of vein graft hyperplasia: Association with tangential stress (1987) J Vasc Surg, 5 (1), pp. 126-136
  49. Borin, T.F., Miyakawa, A.A., Cardoso, L., de Figueiredo Borges, L., Gonçalves, G.A., Krieger, J.E., Apoptosis, cell proliferation and modulation of cyclin-dependent kinase inhibitor p21(cip1) in vascular remodelling during vein arterialization in the rat (2009) Int J Exp Pathol, 90 (3), pp. 328-337
  50. Chiu, J.-J., Chien, S., Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives (2011) Physiol Rev., 91 (1), pp. 327-387
  51. Chistiakov, D.A., Orekhov, A.N., Bobryshev, Y.V., Effects of shear stress on endothelial cells: Go with the flow (2017) Acta Physiol (Oxf), 219 (2), pp. 382-408
  52. Brown, T.D., Techniques for mechanical stimulation of cells in vitro: A review (2000) J Biomech., 33 (1), pp. 3-14
  53. Bacabac, R.G., Smit, T.H., Cowin, S.C., Van Loon, J.J.W.A., Nieuwstadt, F.T.M., Heethaar, R., Dynamic shear stress in parallel-plate flow chambers (2005) J Biomech., 38 (1), pp. 159-167
  54. Sultan, S., Gosling, M., Abu-Hayyeh, S., Carey, N., Powell, J.T., Flow-dependent increase of ICAM-1 on saphenous vein endothelium is sensitive to apamin (2004) Am J Physiol Circ Physiol, 287 (1), pp. H22-H28
  55. Zhu, Z.G., Li, H.H., Zhang, B.R., Expression of endothelin-1 and constitutional nitric oxide synthase messenger RNA in saphenous vein endothelial cells exposed to arterial flow shear stress (1997) Ann Thorac Surg, 64 (5), pp. 1333-1338
  56. Ward, A.O., Caputo, M., Angelini, G.D., George, S.J., Zakkar, M., Activation and inflammation of the venous endothelium in vein graft disease (2017) Atherosclerosis., 265, pp. 266-274
  57. Isaji, T., Hashimoto, T., Yamamoto, K., Santana, J.M., Yatsula, B., Hu, H., Improving the outcome of vein grafts: Should vascular surgeons turn veins into arteries? (2017) Ann Vasc Dis, 10 (1), pp. 8-16
  58. DeMaio, L., Chang, Y.S., Gardner, T.W., Tarbell, J.M., Antonetti, D.A., Shear stress regulates occludin content and phosphorylation (2017) Am J Physiol Circ Physiol, 281 (1), pp. H105-H113
  59. Conklin, B.S., Zhong, D.S., Zhao, W., Lin, P.H., Chen, C., Shear stress regulates occludin and VEGF expression in porcine arterial endothelial cells (2002) J Surg Res, 102 (1), pp. 13-21
  60. Chappell, D.C., Varner, S.E., Nerem, R.M., Medford, R.M., Alexander, R.W., Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium (1998) Circ Res., 82 (5), pp. 532-539
  61. Hastings, N.E., Simmers, M.B., McDonald, O.G., Wamhoff, B.R., Blackman, B.R., Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming (2007) Am J Physiol Cell Physiol, 293 (6), pp. C1824-C1833
  62. Sakamoto, N., Kiuchi, T., Sato, M., Development of an endothelial-smooth muscle cell coculture model using phenotype-controlled smooth muscle cells (2011) Ann Biomed Eng, 39 (11), pp. 2750-2758
  63. Beranek, J.T., Vascular endothelium-derived cells containing smooth muscle actin are present in restenosis (1995) Lab Invest., 72 (6), p. 771
  64. Frid, M.G., Kale, V.A., Stenmark, K.R., Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: In vitro analysis (2002) Circ Res., 90 (11), pp. 1189-1196
  65. Cooley, B.C., Nevado, J., Mellad, J., Yang, D., Hilaire, C.S., Negro, A., TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling (2014) Sci Transl Med, 6 (227)
  66. Pardali, E., Sanchez-Duffhues, G., Gomez-Puerto, M.C., Ten Dijke, P., TGF-β-induced endothelial-mesenchymal transition in fibrotic diseases (2017) Int J Mol Sci, 18 (10), p. 2157
  67. Fogelstrand, P., Osterberg, K., Mattsson, E., Reduced neointima in vein grafts following a blockage of cell recruitment from the vein and the surrounding tissue (2005) Cardiovasc Res., 67 (2), pp. 326-332
  68. Hu, Y., Zhang, Z., Torsney, E., Afzal, A.R., Davison, F., Metzler, B., Abundant progenitor cells in the adventitia contribute to atheroscleroses of vein grafts in ApoE-deficient mice (2004) J Clin Invest, 113 (9), pp. 1258-1265
  69. Hu, Y., Mayr, M., Metzler, B., Erdel, M., Davison, F., Xu, Q., Both donor and recipient origins of smooth muscle cells in vein graft atherosclerotic lesions (2002) Circ Res., 91 (7), pp. e13-e20
  70. Moonen, J.-R.A.J., Lee, E.S., Schmidt, M., Maleszewska, M., Koerts, J.A., Brouwer, L.A., Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress (2015) Cardiovasc Res., 108 (3), pp. 377-386
  71. Sorescu, G.P., Sykes, M., Weiss, D., Platt, M.O., Saha, A., Hwang, J., Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response (2003) J Biol Chem, 278 (33), pp. 31128-31135
  72. Sorescu, G.P., Song, H., Tressel, S.L., Hwang, J., Dikalov, S., Smith, D.A., Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a Nox1-based NADPH oxidase (2004) Circ Res., 95 (8), pp. 773-779
  73. Lee, J., Wong, M., Smith, Q., Baker, A.B., A novel system for studying mechanical strain waveform-dependent responses in vascular smooth muscle cells (2013) Lab Chip., 13 (23), pp. 4573-4582
  74. Campos, L.C.G., Miyakawa, A.A., Barauna, V.G., Cardoso, L., Borin, T.F., Dallan, L.A., Induction of CRP3/MLP expression during vein arterialization is dependent on stretch rather than shear stress (2009) Cardiovasc Res, 83 (1), pp. 140-147
  75. Krenning, G., Barauna, V.G., Krieger, J.E., Harmsen, M.C., Moonen, J.-R., Endothelial plasticity: Shifting phenotypes through force feedback (2016) Stem Cells Int, 2016, p. 9762959
  76. Panieri, E., Santoro, M.M., ROS signaling and redox biology in endothelial cells (2015) Cell Mol Life Sci, 72 (17), pp. 3281-3303
  77. Birukov, K.G., Small GTPases in mechanosensitive regulation of endothelial barrier (2009) Microvasc Res., 77 (1), pp. 46-52
  78. Cevallos, M., Riha, G.M., Wang, X., Yang, H., Yan, S., Li, M., Cyclic strain induces expression of specific smooth muscle cell markers in human endothelial cells (2006) Differentiation., 74 (9-10), pp. 552-561
  79. Mai, J., Hu, Q., Xie, Y., Su, S., Qiu, Q., Yuan, W., Dyssynchronous pacing triggers endothelial-mesenchymal transition through heterogeneity of mechanical stretch in a canine model (2015) Circ J., 79 (1), pp. 201-209
  80. Meza, D., Abejar, L., Rubenstein, D.A., Yin, W., A shearing-stretching device that can apply physiological fluid shear stress and cyclic stretch concurrently to endothelial cells (2016) J Biomech Eng, 138 (3), p. 031007
  81. Benbrahim, A., L’Italien, G.J., Kwolek, C.J., Petersen, M.J., Milinazzo, B., Gertler, J.P., Characteristics of vascular wall cells subjected to dynamic cyclic strain and fluid shear conditions in vitro (1996) J Surg Res, 65 (2), pp. 119-127
  82. Casey, P.J., Dattilo, J.B., Dai, G., Albert, J.A., Tsukurov, O.I., Orkin, R.W., The effect of combined arterial hemodynamics on saphenous venous endothelial nitric oxide production (2001) J Vasc Surg, 33 (6), pp. 1199-1205
  83. Williams, C., Wick, T.M., Endothelial cell-smooth muscle cell co-culture in a perfusion bioreactor system (2005) Ann Biomed Eng, 33 (7), pp. 920-928
  84. Berard, X., Déglise, S., Alonso, F., Saucy, F., Meda, P., Bordenave, L., Role of hemodynamic forces in the ex vivo arterialization of human saphenous veins (2013) J Vasc Surg, 57 (5), pp. 1371-1382
  85. Miyakawa, A.A., Dallan, L.A.O., Lacchini, S., Borin, T.F., Krieger, J.E., Human saphenous vein organ culture under controlled hemodynamic conditions (2008) Clinics (Sao Paulo), 63 (5), pp. 683-688
  86. Muluk, S.C., Vorp, D.A., Severyn, D.A., Gleixner, S., Johnson, P.C., Webster, M.W., Enhancement of tissue factor expression by vein segments exposed to coronary arterial hemodynamics (1998) J Vasc Surg, 27 (3), pp. 521-527
  87. Schachner, T., Laufer, G., Bonatti, J., In vivo (animal) models of vein graft disease (2006) Eur J Cardiothorac Surg, pp. 451-463
  88. Cooley, B.C., Experimental vein graft research: A critical appraisal of models (2015) Heart Res Open J, 2, pp. 53-59
  89. Thomas, A.C., Animal models for studying vein graft failure and therapeutic interventions (2012) Curr Opin Pharmacol, 12 (2), pp. 121-126
  90. Owens, C.D., Gasper, W.J., Rahman, A.S., Conte, M.S., Vein graft failure (2015) J Vasc Surg, 61 (1), pp. 203-216
  91. Ehsan, A., Mann, M.J., Dell’Acqua, G., Dzau, V.J., Long-term stabilization ofvein graft wall architecture and prolonged resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy (2001) J Thorac Cardiovasc Surg, 121 (4), pp. 714-722
  92. Alexander, J.H., Hafley, G., Harrington, R.A., Peterson, E.D., Ferguson, T.B., Lorenz, T.J., Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: A randomized controlled trial (2005) JAMA, 294 (19), pp. 2446-2454
  93. Hess, C.N., Lopes, R.D., Gibson, C.M., Hager, R., Wojdyla, D.M., Englum, B.R., Saphenous vein graft failure after coronary artery bypass surgery: Insights from PREVENT IV (2014) Circulation., 130 (17), pp. 1445-1451
  94. Petrofski, J.A., Hata, J.A., Gehrig, T.R., Hanish, S.I., Williams, M.L., Thompson, R.B., Gene delivery to aortocoronary saphenous vein grafts in a large animal model of intimal hyperplasia (2004) J Thorac Cardiovasc Surg, 127 (1), pp. 27-33
  95. Wan, S., Yim, A.P.C., Johnson, J.L., Shukla, N., Angelini, G.D., Smith, F.C., The endothelin 1A receptor antagonist BSF 302146 is a potent inhibitor of neointimal and medial thickening in porcine saphenous vein-carotid artery interposition grafts (2004) J Thorac Cardiovasc Surg, 127 (5), pp. 1317-1322
  96. Jeremy, J.Y., Dashwood, M.R., Timm, M., Izzat, M.B., Mehta, D., Bryan, A.J., Nitric oxide synthase and adenylyl and guanylyl cyclase activity in porcine interposition vein grafts (1997) Ann Thorac Surg, 63 (2), pp. 470-476
  97. George, S.J., Wan, S., Hu, J., MacDonald, R., Johnson, J.L., Baker, A.H., Sustained reduction of vein graft neointima formation by ex vivo TIMP-3 gene therapy (2011) Circulation, 124 (11), pp. S135-S142
  98. Dashwood, M., Loesch, A., The saphenous vein as a bypass conduit: The potential role of vascular nerves in graft performance (2009) Curr Vasc Pharmacol, 7 (1), pp. 47-57