Expression of HMGCS2 in intestinal epithelial cells is downregulated in inflammatory bowel disease associated with endoplasmic reticulum stress

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
MARTIN-ADRADOS, Beatriz
WCULEK, Stefanie K. K.
FERNANDEZ-BRAVO, Sergio
TORRES-RUIZ, Raul
VALLE-NOGUERA, Ana
GOMEZ-SANCHEZ, Maria Jose
HERNANDEZ-WALIAS, Jose Carlos
CORRALIZA, Ana Maria
SANCHO, David
Citação
FRONTIERS IN IMMUNOLOGY, v.14, article ID 1185517, 15p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
IntroductionThe Unfolded Protein Response, a mechanism triggered by the cell in response to Endoplasmic reticulum stress, is linked to inflammatory responses. Our aim was to identify novel Unfolded Protein Response-mechanisms that might be involved in triggering or perpetuating the inflammatory response carried out by the Intestinal Epithelial Cells in the context of Inflammatory Bowel Disease. MethodsWe analyzed the transcriptional profile of human Intestinal Epithelial Cell lines treated with an Endoplasmic Reticulum stress inducer (thapsigargin) and/or proinflammatory stimuli. Several genes were further analyzed in colonic biopsies from Ulcerative Colitis patients and healthy controls. Lastly, we generated Caco-2 cells lacking HMGCS2 by CRISPR Cas-9 and analyzed the functional implications of its absence in Intestinal Epithelial Cells. ResultsExposure to a TLR ligand after thapsigargin treatment resulted in a powerful synergistic modulation of gene expression, which led us to identify new genes and pathways that could be involved in inflammatory responses linked to the Unfolded Protein Response. Key differentially expressed genes in the array also exhibited transcriptional alterations in colonic biopsies from active Ulcerative Colitis patients, including NKG2D ligands and the enzyme HMGCS2. Moreover, functional studies showed altered metabolic responses and epithelial barrier integrity in HMGCS2 deficient cell lines. ConclusionWe have identified new genes and pathways that are regulated by the Unfolded Protein Response in the context of Inflammatory Bowel Disease including HMGCS2, a gene involved in the metabolism of Short Chain Fatty Acids that may have an important role in intestinal inflammation linked to Endoplasmic Reticulum stress and the resolution of the epithelial damage.
Palavras-chave
inflammatory bowel disease, inflammation, ER stress, HMGCS2, unfolded protein response (UPR)
Referências
  1. Allez M, 2017, GUT, V66, P1918, DOI 10.1136/gutjnl-2016-311824
  2. Assisi R F, 2008, Minerva Gastroenterol Dietol, V54, P231
  3. Barrett JC, 2008, NAT GENET, V40, P955, DOI 10.1038/ng.175
  4. Beaudry K, 2019, J CELL PHYSIOL, V234, P6731, DOI 10.1002/jcp.27420
  5. Bettigole SE, 2015, ANNU REV IMMUNOL, V33, P107, DOI 10.1146/annurev-immunol-032414-112116
  6. Bogaert S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025589
  7. Brandl K, 2009, P NATL ACAD SCI USA, V106, P3300, DOI 10.1073/pnas.0813036106
  8. Breuer RI, 1997, GUT, V40, P485, DOI 10.1136/gut.40.4.485
  9. Chang JT, 2020, NEW ENGL J MED, V383, P2652, DOI 10.1056/NEJMra2002697
  10. Cheng CW, 2019, CELL, V178, P1115, DOI 10.1016/j.cell.2019.07.048
  11. Cherbuy C, 2004, EUR J BIOCHEM, V271, P87, DOI 10.1046/j.1432-1033.2003.03908.x
  12. Coope A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0223105
  13. Donohoe DR, 2012, MOL CELL, V48, P612, DOI 10.1016/j.molcel.2012.08.033
  14. Donohoe DR, 2011, CELL METAB, V13, P517, DOI 10.1016/j.cmet.2011.02.018
  15. Foster DW, 2012, J CLIN INVEST, V122, P1958, DOI 10.1172/JCI63967
  16. Haberman Y, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-018-07841-3
  17. Hamer HM, 2010, CLIN NUTR, V29, P738, DOI 10.1016/j.clnu.2010.04.002
  18. Harding HP, 2000, MOL CELL, V6, P1099, DOI 10.1016/S1097-2765(00)00108-8
  19. Helenius TO, 2015, MOL BIOL CELL, V26, P2298, DOI 10.1091/mbc.E14-02-0736
  20. Hosomi S, 2017, J EXP MED, V214, P2985, DOI 10.1084/jem.20162041
  21. Kaiko GE, 2016, CELL, V165, P1708, DOI 10.1016/j.cell.2016.05.018
  22. Kaser A, 2008, CELL, V134, P743, DOI 10.1016/j.cell.2008.07.021
  23. Kaser A, 2011, EXP CELL RES, V317, P2772, DOI 10.1016/j.yexcr.2011.07.008
  24. Kaser A, 2010, CURR OPIN GASTROEN, V26, P318, DOI 10.1097/MOG.0b013e32833a9ff1
  25. Korotkevich G, 2021, BIORXIV, DOI [DOI 10.1101/060012V3, DOI 10.1101/060012]
  26. Lebeau J, 2018, CELL REP, V22, P2827, DOI 10.1016/j.celrep.2018.02.055
  27. Low END, 2019, J CROHNS COLITIS, V13, P755, DOI 10.1093/ecco-jcc/jjz002
  28. Martinez-Lage M, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18875-x
  29. McGovern DPB, 2010, NAT GENET, V42, P332, DOI 10.1038/ng.549
  30. Penrose HM, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-88489-w
  31. Puchalska P, 2021, ANNU REV NUTR, V41, P49, DOI 10.1146/annurev-nutr-111120-111518
  32. Puchalska P, 2017, CELL METAB, V25, P262, DOI 10.1016/j.cmet.2016.12.022
  33. Ritchie ME, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv007
  34. Soldavini J, 2013, DIGEST DIS SCI, V58, P2756, DOI 10.1007/s10620-013-2744-4
  35. Steinhart AH, 1996, ALIMENT PHARM THER, V10, P729, DOI 10.1046/j.1365-2036.1996.d01-509.x
  36. Treton X, 2011, GASTROENTEROLOGY, V141, P1024, DOI 10.1053/j.gastro.2011.05.033
  37. Vadstrup K, 2017, EXP MOL PATHOL, V103, P56, DOI 10.1016/j.yexmp.2017.06.010
  38. Vernia P, 2003, EUR J CLIN INVEST, V33, P244, DOI 10.1046/j.1365-2362.2003.01130.x
  39. Vernia P, 2000, DIGEST DIS SCI, V45, P976, DOI 10.1023/A:1005537411244
  40. Wang QD, 2017, CELL DEATH DIFFER, V24, P458, DOI 10.1038/cdd.2016.142
  41. Wang W, 2014, J CLIN MICROBIOL, V52, P398, DOI 10.1128/JCM.01500-13
  42. Xu RX, 2022, SEMIN IMMUNOL, V61-64, DOI 10.1016/j.smim.2022.101664