Application of thermography to estimate respiratory rate in the emergency room: The journal Temperature toolbox

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorALDRED, A.
dc.contributor.authorRIBEIRO, J. A. S.
dc.contributor.authorBEZERRA, P. M. S.
dc.contributor.authorANTUNES, A. C. M.
dc.contributor.authorGOULART, A. C.
dc.contributor.authorDESUó, I. C.
dc.contributor.authorGOMES, G.
dc.date.accessioned2024-03-13T20:04:45Z
dc.date.available2024-03-13T20:04:45Z
dc.date.issued2023
dc.description.abstractAmong the vital signs collected during hospital triage, respiratory rate is an important parameter associated with physiological, pathophysiological, and emotional changes. In recent years, the importance of its verification in emergency centers due to the severe acute respiratory syndrome 2 (SARS2) pandemic has become very clear, although it is still one of the least evaluated and collected vital signs. In this context, infrared imaging has been shown to be a reliable estimator of respiratory rate, with the advantage of not requiring physical contact with patients. The objective of this study was to evaluate the potential of analyzing a sequence of thermal images as an estimator of respiratory rate in the clinical routine of an emergency room. We used an infrared thermal camera (T540, Flir Systems) to obtain the respiratory rate data of 136 patients, based on nostrils’ temperature fluctuation, during the peak of the COVID-19 pandemic in Brazil and compared it with the chest incursion count method, commonly employed in the emergency screening procedures. We found a good agreement between both methods, with Bland-Altman limits of agreement ranging from −4 to 4 min−1, no proportional bias (R2 = 0.021, p = 0.095), and a strong correlation between them (r = 0.95, p < 0.001). Our results suggest that infrared thermography has potential to be a good estimator of respiratory rate in the routine of an emergency room.eng
dc.description.indexPubMed
dc.description.indexScopus
dc.description.indexDimensions
dc.description.sponsorshipUniversity of Rijeka, (RC.2.2.06-0001)
dc.description.sponsorshipMinistarstvo Obrazovanja, Znanosti i Sporta, MZOS
dc.description.sponsorshipHrvatska Zaklada za Znanost, HRZZ, (IP-2018-01-1503)
dc.description.sponsorshipEuropean Regional Development Fund, ERDF
dc.identifier.citationTEMPERATURE, v.10, n.2, p.159-165, 2023
dc.identifier.doi10.1080/23328940.2022.2099215
dc.identifier.issn2332-8940
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/58705
dc.language.isoeng
dc.publisherTAYLOR AND FRANCIS LTD.eng
dc.relation.ispartofTemperature
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright TAYLOR AND FRANCIS LTD.eng
dc.subjectBland-Altmaneng
dc.subjectemergency roomeng
dc.subjectpandemicseng
dc.subjectrespiratory rateeng
dc.subjectSARS2eng
dc.subjectThermographyeng
dc.subjecttriageeng
dc.subject.otheradulteng
dc.subject.otherarticleeng
dc.subject.otherbreathing rateeng
dc.subject.othercontrolled studyeng
dc.subject.othercoronavirus disease 2019eng
dc.subject.otheremergency wardeng
dc.subject.otherfemaleeng
dc.subject.otherhealth care personneleng
dc.subject.otherheart auscultationeng
dc.subject.otherhumaneng
dc.subject.otherlimit of agreementeng
dc.subject.othermajor clinical studyeng
dc.subject.othermaleeng
dc.subject.othermiddle agedeng
dc.subject.otheroxygen saturationeng
dc.subject.otherpandemiceng
dc.subject.otherplethysmographyeng
dc.subject.otherreal time polymerase chain reactioneng
dc.subject.otherskin temperatureeng
dc.subject.othertemperature acclimatizationeng
dc.subject.otherthermographyeng
dc.titleApplication of thermography to estimate respiratory rate in the emergency room: The journal Temperature toolboxeng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalALDRED, A.:Department of Science and R&D, Predikta Soluções em Pesquisa, São Paulo, Brazil
hcfmusp.author.externalRIBEIRO, J. A. S.:Department of Science and R&D, Predikta Soluções em Pesquisa, São Paulo, Brazil, Department of Science, Termodiagnose Institute, São Paulo, Brazil
hcfmusp.author.externalBEZERRA, P. M. S.:Department of Science and R&D, Predikta Soluções em Pesquisa, São Paulo, Brazil, Faculty of Electrical Engineering (FEEC), Campinas State University (UNICAMP), São Paulo, Brazil
hcfmusp.author.externalDESUó, I. C.:Department of Science and R&D, Predikta Soluções em Pesquisa, São Paulo, Brazil
hcfmusp.author.externalGOMES, G.:Department of Science and R&D, Predikta Soluções em Pesquisa, São Paulo, Brazil
hcfmusp.citation.scopus0
hcfmusp.contributor.author-fmusphcANA CAROLINA MAKINO ANTUNES
hcfmusp.contributor.author-fmusphcALESSANDRA CARVALHO GOULART
hcfmusp.description.beginpage159
hcfmusp.description.endpage165
hcfmusp.description.issue2
hcfmusp.description.volume10
hcfmusp.origemSCOPUS
hcfmusp.origem.dimensionspub.1149339541
hcfmusp.origem.scopus2-s2.0-85135452737
hcfmusp.relation.referenceChester J.G., Rudolph J.L., Vital signs in older patients: age-related changes, J Am Med Dir Assoc, 12, 5, pp. 337-343, (2011)eng
hcfmusp.relation.referenceRechtman E., Curtin P., Navarro E., Et al., Vital signs assessed in initial clinical encounters predict COVID-19 mortality in an NYC hospital system, Sci Rep, 10, (2020)eng
hcfmusp.relation.referenceHuang C., Wang Y., Li X., Et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395, pp. 497-506, (2020)eng
hcfmusp.relation.referenceCretikos M.A., Bellomo R., Hillman K., Et al., Respiratory rate: the neglected vital sign, Med J Aust, 188, 11, pp. 657-659, (2008)eng
hcfmusp.relation.referenceDroitcour A.D., Seto T.B., Park B.-K., Et al., Non-contact respiratory rate measurement validation for hospitalized patients, Annu Int Conf IEEE Eng Med Biol Soc, 2009, pp. 4812-4815, (2009)eng
hcfmusp.relation.referencePereira C.B., Yu X., Czaplik M., Et al., Remote monitoring of breathing dynamics using infrared thermography, Biomed Opt Express, 6, 11, pp. 4378-4394, (2015)eng
hcfmusp.relation.referenceEbell M.H., Predicting pneumonia in adults with respiratory illness, Am Fam Physician, 76, 4, pp. 560-562, (2007)eng
hcfmusp.relation.referenceMochizuki K., Shintani R., Mori K., Et al., Importance of respiratory rate for the prediction of clinical deterioration after emergency department discharge: a single‐center, case–control study, Acute Med Surg, 4, 2, pp. 172-178, (2017)eng
hcfmusp.relation.referenceMolgaard R.R., Larsen P., Hakonsen S.J., Effectiveness of respiratory rates in determining clinical deterioration: a systematic review protocol, JBI Database Syst Rev Implement Rep, 14, 7, pp. 19-27, (2016)eng
hcfmusp.relation.referenceBianchi W., Dugas A.F., Hsieh Y.-H., Et al., Revitalizing a vital sign: improving detection of tachypnea at primary triage, Ann Emerg Med, 61, 1, pp. 37-43, (2013)eng
hcfmusp.relation.referenceZane R.D., Emergency department triage respiratory rate measurements are often inaccurate, NEJM J Watch, (2013)eng
hcfmusp.relation.referenceAcutely ill patients in hospital: recognition of and response to acute illness in adults in hospital. London: national Institute for Health and Clinical Excellence (UK), (2007)eng
hcfmusp.relation.referencePhilip K.E.J., Pack E., Cambiano V., Et al., The accuracy of respiratory rate assessment by doctors in a London teaching hospital: a cross-sectional study, J Clin Monit Comput, 29, pp. 455-460, (2015)eng
hcfmusp.relation.referenceLovett P.B., Buchwald J.M., Sturmann K., Et al., The vexatious vital: neither clinical measurements by nurses nor an electronic monitor provides accurate measurements of respiratory rate in triage, Ann Emerg Med, 45, 1, pp. 68-76, (2005)eng
hcfmusp.relation.referenceEdmonds Z.V., Mower W.R., Lovato L.M., Et al., The reliability of vital sign measurements, Ann Emerg Med, 39, 3, pp. 233-237, (2002)eng
hcfmusp.relation.referenceAbbas A.K., Heimann K., Jergus K., Et al., Neonatal non-contact respiratory monitoring based on real-time infrared thermography, Biomed Eng Online, 10, 1, (2011)eng
hcfmusp.relation.referenceFei J., Pavlidis I., Thermistor at a distance: unobtrusive measurement of breathing, IEEE Trans Biomed Eng, 57, 4, pp. 988-998, (2010)eng
hcfmusp.relation.referenceLewis G.F., Gatto R.G., Porges S.W., A novel method for extracting respiration rate and relative tidal volume from infrared thermography, Psychophysiology, 48, 7, pp. 877-887, (2011)eng
hcfmusp.relation.referencePan F., Yang L., Li Y., Et al., Factors associated with death outcome in patients with severe coronavirus disease-19 (COVID-19): a case-control study, Int J Med Sci, 17, 9, pp. 1281-1292, (2020)eng
hcfmusp.relation.referenceBland J.M., Altman D.G., Measuring agreement in method comparison studies, Stat Methods Med Res, 8, 2, pp. 135-160, (1999)eng
hcfmusp.relation.referenceBland J.M., Altman D.G., Statistical methods for assessing agreement between two methods of clinical measurement, Lancet, 327, 8476, pp. 307-310, (1986)eng
hcfmusp.relation.referencePereira C.B., Czaplik M., Blazek V., Et al., Monitoring of cardiorespiratory signals using thermal imaging: a Pilot Study on healthy human subjects, Sensors, 18, 5, (2018)eng
hcfmusp.relation.referenceLorato I., Stuijk S., Meftah M., Multi-camera infrared thermography for infant respiration monitoring, Biomed Opt Express, 11, pp. 4848-4861, (2020)eng
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublication6408d612-ad08-4543-afa0-adc570e9c7f3
relation.isAuthorOfPublicationcd675f04-b4ad-47f1-8d3c-15f6cb73d8cf
relation.isAuthorOfPublication.latestForDiscovery6408d612-ad08-4543-afa0-adc570e9c7f3
Arquivos