Clinical and Prognostic Impact of the Warburg Effect in Esophageal Carcinoma: Monocarboxylate Transporters as Candidates for Therapeutic Targeting

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
KARGER
Autores
AFONSO, Julieta
BARBOSA, Andreia
PASTREZ, Paula Roberta Aguiar
BONATELLI, Murilo
COSTA, Ricardo Filipe Alves da
PINHEIRO, Celine
BALTAZAR, Fatima
Citação
PATHOBIOLOGY, v.90, n.4, p.251-269, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: Esophageal cancer (EC) seems to display increased glycolytic activity, but clinical studies on the expression/prognostic significance of glycometabolism-related proteins, as well as functional assays, are missing. Methods: Expression of 10 glycolytic biomarkers was evaluated by immunohistochemistry in tissue sections from 95 patients. Two esophageal squamous cell carcinoma (ESCC) cell lines were used to assess the effect of monocarboxylate transporter (MCT) downregulation on cell viability and extracellular lactate/glucose accumulation. Results: Expression of MCT1, MCT4, CD147, and GLUT1 was significantly associated with an ESCC histopathology, while a poor clinicopathological profile was seen in GLUT1- and LDHA-positive EC cases. In the ESCC group, MCT1 immunoreactivity is associated with high TNM stage and metastasis. The 3-year overall survival (OS) rate was significantly influenced by MCT4 and CAIX positivity and HKII negativity. Those biomarkers were considered independent prognostic factors of OS in multivariate analysis. Dual inhibition of MCT1/4 expression decreased cell viability and extracellular lactate accumulation in ESCC cells. Conclusion: Elevated glycolytic rates correlate with a poor clinicopathological profile in EC patients. MCT4 and CAIX positivity independently predict a worse prognosis. Due to the lack of information on treatment modalities, we could not further infer the role of these biomarkers in predicting response to therapy, which needs to be assessed in future studies. In addition, MCT1/4 targeting should be performed both ""in vitro"" and ""in vivo"" to further explore its impact on tumor growth and response to classical therapies. HKII expression and function, particularly in the tumor stroma, should be investigated.
Palavras-chave
Esophageal cancer, Esophageal squamous cell carcinoma, Warburg effect, Lactate, Monocarboxylate transporters, Carbonic anhydrase IX
Referências
  1. Abdel-Wahab AF, 2019, PHARMACOL RES, V150, DOI 10.1016/j.phrs.2019.104511
  2. Afonso J, 2015, MOL CARCINOGEN, V54, P1451, DOI 10.1002/mc.22222
  3. Rojas LBA, 2013, DIABETOL METAB SYNDR, V5, DOI 10.1186/1758-5996-5-6
  4. Alves VA, 2014, WORLD J GASTROENTERO, V20, P11780, DOI 10.3748/wjg.v20.i33.11780
  5. Amorim R, 2015, CANCER LETT, V365, P68, DOI 10.1016/j.canlet.2015.05.015
  6. Ancey PB, 2018, FEBS J, V285, P2926, DOI 10.1111/febs.14577
  7. Atas E, 2020, FRONT ONCOL, V10, DOI 10.3389/fonc.2020.583217
  8. Baltazar F., 2020, INNOVATIVE APPROACH, P417
  9. Baltazar F, 2020, FRONT ONCOL, V10, DOI 10.3389/fonc.2020.00231
  10. Becker HM, 2020, BRIT J CANCER, V122, P157, DOI 10.1038/s41416-019-0642-z
  11. Belisario DC, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9122598
  12. Benjamin D, 2018, CELL REP, V25, P3047, DOI 10.1016/j.celrep.2018.11.043
  13. Birner P, 2011, ANN SURG ONCOL, V18, P3330, DOI 10.1245/s10434-011-1730-3
  14. Chen CH, 2001, J BIOL CHEM, V276, P9519, DOI 10.1074/jbc.M010144200
  15. Chen X, 2019, ONCOL REP, V41, P2529, DOI 10.3892/or.2019.6992
  16. Chen XM, 2019, NAT REV DRUG DISCOV, V18, P99, DOI 10.1038/s41573-018-0004-1
  17. Cheng B, 2018, ONCOL REP, V40, P2906, DOI 10.3892/or.2018.6706
  18. Chiba I, 2011, ONCOL LETT, V2, P21, DOI 10.3892/ol.2010.199
  19. Choe JH, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10030606
  20. Ciscato F, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22094716
  21. Cummings D, 2021, CANCERS, V13, DOI 10.3390/cancers13030582
  22. Dana P, 2020, CELL ONCOL, V43, P211, DOI 10.1007/s13402-019-00479-3
  23. DeBerardinis RJ, 2020, NAT METAB, V2, P127, DOI 10.1038/s42255-020-0172-2
  24. Deng XQ, 2020, BIOCHEM PHARMACOL, V178, DOI 10.1016/j.bcp.2020.114038
  25. Dotto GP, 2016, CANCER CELL, V29, P622, DOI 10.1016/j.ccell.2016.04.004
  26. Doyen J, 2014, BIOCHEM BIOPH RES CO, V451, P54, DOI 10.1016/j.bbrc.2014.07.050
  27. Drenckhan A, 2018, J ENZYM INHIB MED CH, V33, P1024, DOI 10.1080/14756366.2018.1475369
  28. Driessen A, 2006, ANN SURG, V243, P334, DOI 10.1097/01.sla.0000201452.09591.f3
  29. Feng YB, 2018, CANCER MED-US, V7, P6124, DOI 10.1002/cam4.1820
  30. Gatenby RA, 1996, CANCER RES, V56, P5745
  31. Granja S, 2015, ONCOTARGET, V6, P6708, DOI 10.18632/oncotarget.2862
  32. Guan X, 2019, AAPS J, V21, DOI 10.1208/s12248-018-0279-5
  33. Halestrap AP, 2013, MOL ASPECTS MED, V34, P337, DOI 10.1016/j.mam.2012.05.003
  34. Halestrap AP, 2004, PFLUG ARCH EUR J PHY, V447, P619, DOI 10.1007/s00424-003-1067-2
  35. Halford SER, 2017, J CLIN ONCOL, V35, DOI 10.1200/JCO.2017.35.15_suppl.2516
  36. Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  37. He YT, 2020, CANCER COMMUN, V40, P531, DOI 10.1002/cac2.12087
  38. HERRMANN GR, 1959, JAMA-J AM MED ASSOC, V169, P1609, DOI 10.1001/jama.1959.03000310061013
  39. Hiyoshi Y, 2009, ONCOLOGY-BASEL, V76, P286, DOI 10.1159/000207505
  40. Ho N., 2016, CANC TREATMENT COMMU, V6, P11, DOI [10.1016/j.ctrc.2016.02.008, DOI 10.1016/J.CTRC.2016.02.008]
  41. Hsieh MH, 2019, CELL REP, V28, P1860, DOI 10.1016/j.celrep.2019.07.027
  42. Huhta H, 2017, ONCOTARGET, V8, P22894, DOI 10.18632/oncotarget.15284
  43. Jemal A, 2011, CA-CANCER J CLIN, V61, P134, DOI [10.3322/caac.20115, 10.3322/caac.20107, 10.3322/caac.21492]
  44. Jemal A, 2009, CA-CANCER J CLIN, V59, P225, DOI [10.3322/caac.21601, 10.3322/caac.20006, 10.3322/caac.21654, 10.3322/caac.21254, 10.3322/caac.21551, 10.3322/caac.21387, 10.3322/caac.20073, 10.3322/caac.21332]
  45. Jing SW, 2017, TUMOR BIOL, V39, DOI 10.1177/1010428317717983
  46. Jun Jonathan C, 2017, Curr Sleep Med Rep, V3, P1, DOI 10.1007/s40675-017-0062-7
  47. Jung DE, 2016, MOL CARCINOGEN, V55, P633, DOI 10.1002/mc.22309
  48. Kaluz S, 2009, BBA-REV CANCER, V1795, P162, DOI 10.1016/j.bbcan.2009.01.001
  49. Kendrick AA, 2017, ONCOTARGET, V8, P6742, DOI 10.18632/oncotarget.14272
  50. Kim HK, 2018, MOL CANCER THER, V17, P838, DOI 10.1158/1535-7163.MCT-17-0535
  51. Kim J, 2017, NATURE, V541, P169, DOI 10.1038/nature20805
  52. Koukourakis MI, 2007, CANCER BIOL THER, V6, P1476, DOI 10.4161/cbt.6.9.4635
  53. Lagisetty KH, 2017, J THORAC CARDIOV SUR, V154, P1446, DOI 10.1016/j.jtcvs.2017.04.074
  54. Landras A, 2019, CANCERS, V11, DOI 10.3390/cancers11111803
  55. Li FF, 2019, LIFE SCI, V232, DOI 10.1016/j.lfs.2019.116679
  56. Li H, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180271
  57. Li R, 2016, INT J CLIN EXP PATHO, V9, P3708
  58. Li SM, 2019, EUR J PHARMACOL, V854, P232, DOI 10.1016/j.ejphar.2019.04.018
  59. Li WF, 2014, MED ONCOL, V31, DOI 10.1007/s12032-014-0118-1
  60. Lin XP, 2020, FRONT ONCOL, V10, DOI 10.3389/fonc.2020.00317
  61. Liu L, 2019, ONCOTARGETS THER, V12, P9899, DOI 10.2147/OTT.S226851
  62. Liu XS, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.665388
  63. Liu Y, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06841-7
  64. Liu YL, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166230
  65. Lv JC, 2019, AM J MED SCI, V358, P412, DOI 10.1016/j.amjms.2019.09.012
  66. Lynam-Lennon N, 2014, BMC CANCER, V14, DOI 10.1186/1471-2407-14-907
  67. Lyshchik A, 2007, CANCER INVEST, V25, P154, DOI 10.1080/07357900701208931
  68. Ma ZW, 2022, SEMIN CANCER BIOL, V80, P379, DOI 10.1016/j.semcancer.2020.09.011
  69. Maacha S, 2018, NEOPLASIA, V20, P1008, DOI 10.1016/j.neo.2018.08.005
  70. Mao CY, 2021, FRONT CELL DEV BIOL, V9, DOI 10.3389/fcell.2021.612451
  71. Mao XL, 2018, MOL MED REP, V17, P6116, DOI 10.3892/mmr.2018.8574
  72. Marchiq I, 2016, J MOL MED, V94, P155, DOI 10.1007/s00109-015-1307-x
  73. Mariette C, 2005, WORLD J SURG, V29, P39, DOI 10.1007/s00268-004-7542-x
  74. Marín-Hernández A, 2009, MINI-REV MED CHEM, V9, P1084, DOI 10.2174/138955709788922610
  75. Mathupala SP, 2004, NEUROSURGERY, V55, P1410, DOI 10.1227/01.NEU.0000143034.62913.59
  76. MICHELS PAM, 1979, FEMS MICROBIOL LETT, V5, P357, DOI 10.1111/j.1574-6968.1979.tb03339.x
  77. Miranda-Gonçalves V, 2021, CANCERS, V13, DOI 10.3390/cancers13143468
  78. Miranda-Gonçalves V, 2013, NEURO-ONCOLOGY, V15, P172, DOI 10.1093/neuonc/nos298
  79. Muramatsu T, 2016, J BIOCHEM, V159, P481, DOI 10.1093/jb/mvv127
  80. Parks SK, 2020, ANNU REV CANC BIOL, V4, P141, DOI 10.1146/annurev-cancerbio-030419-033556
  81. Parks SK, 2017, J PHYSIOL-LONDON, V595, P2439, DOI 10.1113/JP273309
  82. Parks SK, 2013, NAT REV CANCER, V13, P611, DOI 10.1038/nrc3579
  83. Pastorekova S, 2019, CANCER METAST REV, V38, P65, DOI 10.1007/s10555-019-09799-0
  84. Payen VL, 2020, MOL METAB, V33, P48, DOI 10.1016/j.molmet.2019.07.006
  85. Pereira-Nunes A, 2020, ADV EXP MED BIOL, V1219, P51, DOI 10.1007/978-3-030-34025-4_3
  86. Pértega-Gomes N, 2013, PROSTATE, V73, P763, DOI 10.1002/pros.22620
  87. Pértega-Gomes N, 2011, BMC CANCER, V11, DOI 10.1186/1471-2407-11-312
  88. Pinheiro C, 2008, VIRCHOWS ARCH, V452, P139, DOI 10.1007/s00428-007-0558-5
  89. Pinheiro C, 2015, ONCOTARGET, V6, P44403, DOI 10.18632/oncotarget.5623
  90. Pragallapati Sindhuri, 2019, J Oral Maxillofac Pathol, V23, P443, DOI 10.4103/jomfp.JOMFP_22_18
  91. Rice TW, 2015, EUR J CARDIO-THORAC, V48, P194, DOI 10.1093/ejcts/ezv125
  92. Rice TW, 2010, ANN SURG ONCOL, V17, P1721, DOI 10.1245/s10434-010-1024-1
  93. Roberts DJ, 2015, CELL DEATH DIFFER, V22, P364, DOI 10.1038/cdd.2014.208
  94. Sánchez-Danés A, 2018, NAT REV CANCER, V18, P549, DOI 10.1038/s41568-018-0024-5
  95. Saunier E, 2016, INT J CANCER, V138, P809, DOI 10.1002/ijc.29564
  96. Sawayama H, 2019, CANCER SCI, V110, P1705, DOI 10.1111/cas.13995
  97. Sawayama H, 2014, ANN SURG ONCOL, V21, P1756, DOI 10.1245/s10434-013-3371-1
  98. Semenza GL, 2010, CURR OPIN GENET DEV, V20, P51, DOI 10.1016/j.gde.2009.10.009
  99. Shao N, 2020, J CANCER RES THER, V16, P269, DOI 10.4103/jcrt.JCRT_781_19
  100. Short MW, 2017, AM FAM PHYSICIAN, V95, P22
  101. Tanaka N, 2008, BRIT J CANCER, V99, P1468, DOI 10.1038/sj.bjc.6604719
  102. Todenhöfer T, 2018, MOL CANCER THER, V17, P2746, DOI 10.1158/1535-7163.MCT-18-0107
  103. Tohma T, 2005, DIS ESOPHAGUS, V18, P185, DOI 10.1111/j.1442-2050.2005.00489.x
  104. US National Library of Medicine, CT2 SHOW NCT01791595
  105. van Kuijk SJA, 2016, FRONT ONCOL, V6, DOI 10.3389/fonc.2016.00069
  106. Wang M, 2019, CANCER BIOL THER, V20, P1443, DOI 10.1080/15384047.2019.1647052
  107. WARBURG O, 1956, SCIENCE, V123, P309, DOI 10.1126/science.123.3191.309
  108. Wigerup C, 2016, PHARMACOL THERAPEUT, V164, P152, DOI 10.1016/j.pharmthera.2016.04.009
  109. Wu JY, 2017, ONCOTARGET, V8, P32332, DOI 10.18632/oncotarget.15974
  110. Wu J, 2016, BMC CANCER, V16, DOI 10.1186/s12885-016-2417-8
  111. Xin XY, 2016, SCI REP-UK, V6, DOI 10.1038/srep32804
  112. Yang JJ, 2020, FRONT ONCOL, V10, DOI 10.3389/fonc.2020.01727
  113. Yao F, 2013, TUMOR BIOL, V34, P25, DOI 10.1007/s13277-012-0506-0
  114. Ye W, 2021, NMR BIOMED, V34, DOI 10.1002/nbm.4505
  115. Yu M, 2019, J CANCER RES CLIN, V145, P967, DOI 10.1007/s00432-019-02847-w
  116. Yu M, 2017, ONCOTARGET, V8, P43356, DOI 10.18632/oncotarget.17445
  117. Yukawa N, 2020, IN VIVO, V34, P2087, DOI 10.21873/invivo.12012
  118. Zhang L, 2014, INT J CLIN EXP PATHO, V7, P3887
  119. Zhang SP, 2020, J CLIN PHARM THER, V45, P16, DOI 10.1111/jcpt.13039
  120. Zhang T, 2018, ONCOL LETT, V15, P3042, DOI 10.3892/ol.2017.7701
  121. Zhang XL, 2013, BBA-MOL BASIS DIS, V1832, P1207, DOI 10.1016/j.bbadis.2013.03.009
  122. Zhang XL, 2017, BIOSCIENCE REP, V37, DOI 10.1042/BSR20171006
  123. Zhong YL, 2015, ANTICANCER RES, V35, P5533
  124. Zhou YX, 2018, FUTURE ONCOL, V14, P1801, DOI 10.2217/fon-2017-0734
  125. Zhu XL, 2017, GASTROENT RES PRACT, V2017, DOI 10.1155/2017/5469597