Can a Therapeutic Strategy for Hypotension Improve Cerebral Perfusion and Oxygenation in an Experimental Model of Hemorrhagic Shock and Severe Traumatic Brain Injury?

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
HUMANA PRESS INC
Citação
NEUROCRITICAL CARE, v.39, n.2, p.320-330, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundRestoration of brain tissue perfusion is a determining factor in the neurological evolution of patients with traumatic brain injury (TBI) and hemorrhagic shock (HS). In a porcine model of HS without neurological damage, it was observed that the use of fluids or vasoactive drugs was effective in restoring brain perfusion; however, only terlipressin promoted restoration of cerebral oxygenation and lower expression of edema and apoptosis markers. It is unclear whether the use of vasopressor drugs is effective and beneficial during situations of TBI. The objective of this study is to compare the effects of resuscitation with saline solution and terlipressin on cerebral perfusion and oxygenation in a model of TBI and HS.MethodsThirty-two pigs weighing 20-30 kg were randomly allocated into four groups: control (no treatment), saline (60 ml/kg of 0.9% NaCl), terlipressin (2 mg of terlipressin), and saline plus terlipressin (20 ml/kg of 0.9% NaCl + 2 mg of terlipressin). Brain injury was induced by lateral fluid percussion, and HS was induced through pressure-controlled bleeding, aiming at a mean arterial pressure (MAP) of 40 mmHg. After 30 min of circulatory shock, resuscitation strategies were initiated according to the group. The systemic and cerebral hemodynamic and oxygenation parameters, lactate levels, and hemoglobin levels were evaluated. The data were subjected to analysis of variance for repeated measures. The significance level established for statistical analysis was p < 0.05.ResultsThe terlipressin and saline plus terlipressin groups showed an increase in MAP that lasted until the end of the experiment (p < 0.05). There was a notable increase in intracranial pressure in all groups after starting treatment for shock. Cerebral perfusion pressure and cerebral oximetry showed no improvement after hemodynamic recovery in any group. The groups that received saline at resuscitation had the lowest hemoglobin concentrations after treatment.ConclusionsThe treatment of hypotension in HS with saline and/or terlipressin cannot restore cerebral perfusion or oxygenation in experimental models of HS and severe TBI. Elevated MAP raises intracranial pressure owing to brain autoregulation dysfunction caused by TBI.
Palavras-chave
Vasoconstrictor agents, Shock, Hemorrhagic, Cerebrovascular circulation, Advanced trauma life support care, Isotonic solutions, Brain injuries, Traumatic
Referências
  1. Alam HB, 2004, RESUSCITATION, V60, P91, DOI 10.1016/j.resuscitation.2003.08.006
  2. American College of Surgeons, 2018, COMM TRAUM STUD COUR
  3. Bootsma IT, 2022, J CLIN MONIT COMPUT, V36, P17, DOI 10.1007/s10877-021-00673-5
  4. Bootsma IT, 2021, J CLIN MONIT COMPUT, DOI 10.1007/s10877-021-00662-8
  5. Brasil S, 2022, J CLIN MONIT COMPUT, DOI 10.1007/s10877-022-00941-y
  6. Cecconi M, 2014, INTENS CARE MED, V40, P1795, DOI 10.1007/s00134-014-3525-z
  7. CHAMPION HR, 1990, J TRAUMA, V30, P1356, DOI 10.1097/00005373-199011000-00008
  8. CHESNUT RM, 1993, J TRAUMA, V34, P216, DOI 10.1097/00005373-199302000-00006
  9. COCHRAN WG, 1965, J R STAT SOC SER A-G, V128, P234, DOI 10.2307/2344179
  10. Czosnyka M, 2007, NEUROL RES, V29, P672, DOI 10.1179/016164107X240053
  11. Donnelly JE, 2017, CHILD NERV SYST, V33, P1735, DOI 10.1007/s00381-017-3523-x
  12. Dutton RP, 2002, J TRAUMA, V52, P1141, DOI 10.1097/00005373-200206000-00020
  13. Eide PK, 2007, NEUROL RES, V29, P798, DOI 10.1179/016164107X224132
  14. Fecher A, 2021, J CLIN MED, V10, DOI 10.3390/jcm10204793
  15. Feldman Z, 1997, CRIT CARE CLIN, V13, P51, DOI 10.1016/S0749-0704(05)70296-7
  16. Fritz HG, 2005, J NEUROTRAUM, V22, P807, DOI 10.1089/neu.2005.22.807
  17. Gantner D, 2014, CURR OPIN CRIT CARE, V20, P385, DOI 10.1097/MCC.0000000000000114
  18. Gil-Anton J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0235084
  19. Gobatto ALN, 2019, CRIT CARE, V23, DOI 10.1186/s13054-018-2273-9
  20. Godoy DA, 2023, CRIT CARE, V27, DOI 10.1186/s13054-022-04242-3
  21. Gomez A, 2022, INTENS CARE MED EXP, V10, DOI 10.1186/s40635-022-00482-3
  22. Gopinath SP, 1999, CRIT CARE MED, V27, P2337, DOI 10.1097/00003246-199911000-00003
  23. Haas T, 2008, ANESTH ANALG, V106, P1078, DOI 10.1213/ane.0b013e318165df18
  24. Heckbert SR, 1998, J TRAUMA, V45, P545, DOI 10.1097/00005373-199809000-00022
  25. Heldt T, 2019, ANNU REV BIOMED ENG, V21, P523, DOI 10.1146/annurev-bioeng-060418-052257
  26. Holcomb JB, 2018, TRANSFUSION, V58, P1821, DOI 10.1111/trf.14818
  27. Ida KK, 2018, BRIT J ANAESTH, V120, P1245, DOI 10.1016/j.bja.2017.11.074
  28. Ida KK, 2015, CRIT CARE, V19, DOI 10.1186/s13054-015-0825-9
  29. Kashani K, 2022, CLIN J AM SOC NEPHRO, V17, P706, DOI 10.2215/CJN.14191021
  30. Katz PS, 2018, METHODS MOL BIOL, V1717, P27, DOI 10.1007/978-1-4939-7526-6_3
  31. Knotzer H, 2006, BRIT J ANAESTH, V97, P509, DOI 10.1093/bja/ael208
  32. Lambden S, 2018, CRIT CARE, V22, DOI 10.1186/s13054-018-2102-1
  33. Lattanzi S, 2023, AM J HYPERTENS, V36, P19, DOI 10.1093/ajh/hpac114
  34. Le Roux P, 2013, CURR NEUROL NEUROSCI, V13, DOI 10.1007/s11910-012-0331-2
  35. Leech C, 2023, EMERG MED CLIN N AM, V41, P1, DOI 10.1016/j.emc.2022.09.007
  36. Lipsky AM, 2006, J TRAUMA, V61, P1228, DOI 10.1097/01.ta.0000196694.52615.84
  37. MARMAROU A, 1991, J NEUROSURG, V75, pS59, DOI 10.3171/sup.1991.75.1s.0s59
  38. Mathieu F, 2020, NEUROCRIT CARE, V32, P373, DOI 10.1007/s12028-019-00885-3
  39. Mira RG, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.740939
  40. Morales DM, 2005, NEUROSCIENCE, V136, P971, DOI 10.1016/j.neuroscience.2005.08.030
  41. Morelli A, 2009, CRIT CARE, V13, DOI 10.1186/cc7990
  42. Muir WW, 2021, FRONT VET SCI, V8, DOI 10.3389/fvets.2021.744080
  43. Önen A, 2003, J PEDIATR SURG, V38, P1642, DOI 10.1016/S0022-3468(03)00572-4
  44. Rodríguez-Boto G, 2015, NEUROLOGIA, V30, P16, DOI 10.1016/j.nrl.2012.09.002
  45. Sequeira Vasco, 2017, Biophys Rev, V9, P259, DOI 10.1007/s12551-017-0272-8
  46. SHACKFORD SR, 1993, ARCH SURG-CHICAGO, V128, P571, DOI 10.1001/archsurg.1993.01420170107016
  47. Spinella PC, 2016, CURR OPIN HEMATOL, V23, P536, DOI 10.1097/MOH.0000000000000284
  48. Stadlbauer KH, 2003, ANESTHESIOLOGY, V98, P699, DOI 10.1097/00000542-200303000-00018
  49. Stadlbauer KH, 2003, ANESTH ANALG, V96, P1743, DOI 10.1213/01.ANE.0000066017.66951.7F
  50. Stocchetti N, 2017, LANCET NEUROL, V16, P452, DOI 10.1016/S1474-4422(17)30118-7
  51. Tsuneyoshi Isao, 2005, J Anesth, V19, P170, DOI 10.1007/s00540-004-0299-4
  52. Unterberg AW, 2004, NEUROSCIENCE, V129, P1021, DOI 10.1016/j.neuroscience.2004.06.046
  53. Veenith TV, 2016, JAMA NEUROL, V73, P542, DOI 10.1001/jamaneurol.2016.0091
  54. Vincent JL, 1996, CRIT CARE CLIN, V12, P995, DOI 10.1016/S0749-0704(05)70288-8
  55. Voelckel WG, 2010, J TRAUMA, V69, pS69, DOI 10.1097/TA.0b013e3181e44937
  56. Wang A, 2018, CURR TREAT OPTION NE, V20, DOI 10.1007/s11940-018-0501-x
  57. Wiles MD, 2017, ANAESTHESIA, V72, P1448, DOI 10.1111/anae.14042
  58. Xu SB, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.00294
  59. Young AMH, 2018, PEDIATR RES, V83, P41, DOI 10.1038/pr.2017.215
  60. Zeiler FA, 2021, J NEUROTRAUM, V38, P870, DOI 10.1089/neu.2020.7304