Impact of Chronic Rhinosinusitis with Nasal Polyposis on IL-12 and IL-8

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MASHHAD UNIVERSITY OF MEDICAL SCIENCES
Autores
AMARAL, J. B. do
DAVID, A. G.
MELLO, L.
BACHI, A. L. L.
THAMBOO, A.
Citação
IRANIAN JOURNAL OF OTORHINOLARYNGOLOGY, v.35, n.1, p.21-27, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: The pathophysiology of Chronic Rhinosinusitis is coordinated by distinct inflammatory reactions in different individuals. Inflammatory environments with a predominance of Th2 lymphocytes tend also to be rich in eosinophils. These environments are common during the formation of nasal polyps associated with aspirin intolerance, which is also marked by an increase in inflammatory mediators, especially IL-4, IL-5, and IL-13. Despite the significance of these inflammatory mediators, the relevance of IL-12 subunits' presence within eosinophilic nasal polyps, however, has been less studied. The current study aims to evaluate the presence of IL-12 subunits, IL-12p40 and IL-12p70, in eosinophilic nasal polyps and their correlations with IL-8 presence. Materials and Methods: We compared the concentrations of IL-8, IL12p40, and IL12p70 among samples of eosinophilic nasal polypoid tissue, eosinophilic nasal polypoid tissue associated with aspirin intolerance, and healthy nasal mucosa, using an indirect immunoassay (ELISA) kit. Results: When compared to healthy nasal mucosa, there was a lower concentration of IL-8 in Chronic Rhinosinusitis with Nasal Polyp (CRSwNP) tissue. Aspirin Intolerant polypoid tissue also presented a lower concentration of IL-12 subunits compared to healthy nasal mucosa. There was no significant correlation between IL-8 and IL-12 in the eosinophilic polypoid conditions. Conclusion: In CRSwNP, there is a reduction in IL-8 and IL-12 subunits compared to control, with a lack of correlation between IL-12 and IL-8. The lack of correlation can be justified by a type two inflammatory storm environment.
Palavras-chave
Aspirin-Induced Asthma, Interleukin-12, Interleukin-8, Nasal Polyps, Nose Diseases
Referências
  1. Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, Et al., European Position Paper on Rhinosinusitis and Nasal Polyps 2020, Rhinology, 58, pp. 1-464, (2020)
  2. Konig K, Klemens C, Haack M, Nicolo MS, Becker S, Kramer MF, Et al., Cytokine patterns in nasal secretion of non-atopic patients distinguish between chronic rhinosinusitis with or without nasal polys, Allergy, Asthma Clin Immunol, 12, 1, pp. 1-9, (2016)
  3. Tan BK, Klingler AI, Poposki JA, Stevens WW, Peters AT, Suh LA, Et al., Heterogeneous inflammatory patterns in chronic rhinosinusitis without nasal polyps in Chicago, Illinois, J Allergy Clin Immunol, 139, 2, pp. 699-703, (2017)
  4. Van Crombruggen K, Zhang N, Gevaert P, Tomassen P, Bachert C., Pathogenesis of chronic rhinosinusitis: Inflammation, J Allergy Clin Immunol, 128, 4, pp. 728-732, (2011)
  5. Pezato R, Voegels RL, Pinto Bezerra TF, Perez-Novo C, Stamm AC, Gregorio LC., Mechanical disfunction in the mucosal oedema formation of patients with nasal polyps, Rhinol J, 52, 2, pp. 162-166, (2014)
  6. Pezato R, Balsalobre L, Lima M, Bezerra TFP, Voegels RL, Gregorio LC, Et al., Convergence of two major pathophysiologic mechanisms in nasal polyposis: Immune response to Staphylococcus aureus and airway remodeling, J Otolaryngol - Head Neck Surg, 42, MAR, pp. 1-5, (2013)
  7. Gregorio L, Pezato R, Felici RS, Kosugi EM., Fibrotic tissue and middle turbinate exhibit similar mechanical properties. Is fibrosis a solution in nasal polyposis?, Int Arch Otorhinolaryngol, 21, 2, pp. 122-125, (2017)
  8. Van Bruaene N, Derycke L, Perez-Novo CA, Gevaert P, Holtappels G, De Ruyck N, Et al., TGF-β signaling and collagen deposition in chronic rhinosinusitis, J Allergy Clin Immunol, 124, 2, (2009)
  9. DeConde AS, Mace JC, Levy JM, Rudmik L, Alt JA, Smith TL., Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis, Laryngoscope, 127, 3, pp. 550-555, (2017)
  10. Perez-Novo CA, Claeys C, Van Zele T, Holtapples G, Van Cauwenberge P, Bachert C., Eicosanoid Metabolism and Eosinophilic Inflammation in Nasal Polyp Patients with Immune Response to Staphylococcus Aureus Enterotoxins, Am J Rhinol, 20, 4, pp. 456-460, (2006)
  11. Balsalobre L, Pezato R, Mangussi-Gomes J, Gregorio L, Martinho Haddad FL, Gregorio LC, Et al., What is the impact of positive airway pressure in nasal polyposis? An experimental study, Int Arch Otorhinolaryngol, 23, 2, pp. 147-151, (2019)
  12. Stevens WW, Lee RJ, Schleimer RP, Cohen NA., Chronic Rhinosinusitis Pathogenesis HHS Public Access, J Allergy Clin Immunol J Allergy Clin Immunol, 136, 6, pp. 1442-1453, (2015)
  13. Pezato R, Swierczynska-Krepa M, Nizankowska-Mogilnicka E, Derycke L, Bachert C, Perez-Novo CA., Role of imbalance of eicosanoid pathways and staphylococcal superantigens in chronic rhinosinusitis, Allergy Eur J Allergy Clin Immunol, 67, 11, pp. 1347-1356, (2012)
  14. Danielsen A, Tynning T, Brokstad KA, Olofsson J, Davidsson A., Interleukin 5, IL6, IL12, IFN-γ, RANTES and Fractalkine in human nasal polyps, turbinate mucosa and serum, Eur Arch Oto-Rhino-Laryngology Head Neck, 263, 3, pp. 282-289, (2006)
  15. Heufler C, Koch F, Stanzl U, Topar G, Wysocka M, Trinchieri G, Et al., Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-γ production by T helper 1 cells, Eur J Immunol, 26, 3, pp. 659-668, (1996)
  16. Gee K, Guzzo C, Mat NFC, Ma W, Kumar A., The IL-12 family of cytokines in infection, inflammation and autoimmune disorders, Inflamm Allergy - Drug Targets, 8, 1, pp. 40-52, (2009)
  17. Trinchieri G., Interleukin-12 and the regulation of innate resistance and adaptive immunity, Nat Rev Immunol, 3, 2, pp. 133-146, (2003)
  18. Ling P, Gately MK, Gubler U, Stern AS, Lin P, Hollfelder K, Et al., Human IL-12 p40 homodimer binds to the IL-12 receptor but does not mediate biologic activity, J Immunol, 154, 1, pp. 116-127, (1995)
  19. Ma X, Chow JM, Gri G, Carra G, Gerosa F, Wolf SF, Et al., The interleukin 12 p40 gene promoter is primed by interferon γ in monocytic cells, J Exp Med, 183, 1, pp. 147-157, (1996)
  20. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Et al., Interleukin-12: Biological properties and clinical application, Clin Cancer Res, 13, 16, pp. 4677-4685, (2007)
  21. Pezato R, Voegels RL., Why do we not find polyps in the lungs? Bronchial mucosa as a model in the treatment of polyposis, Med Hypotheses, 78, 4, pp. 468-470, (2012)
  22. Bal SM, Bernink JH, Nagasawa M, Groot J, Shikhagaie MM, Golebski K, Et al., IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs, Nat Immunol, 17, 6, pp. 636-645, (2016)
  23. San Nicolo M, Hogerle C, Gellrich D, Eder K, Pfrogner E, Groger M., The time course of nasal cytokine secretion in patients with aspirin-exacerbated respiratory disease (AERD) undergoing aspirin desensitization: preliminary data, Eur Arch Oto-Rhino-Laryngology, 277, 2, pp. 445-452, (2020)
  24. Xiao L, Jia L, Zhang Y, Yu S, Wu X, Yang B, Et al., Human IL-21 +IFN-γ+CD4+ T cells in nasal polyps are regulated by IL-12, Sci Rep, 5, 1, pp. 1-12, (2015)
  25. Fal AM, Rabczynski J, Gerber A., Praca oryginalna Przeciweozynofilowe działanie IL-12 w hodowanej tkance ludzkiego polipa nosa Antieosinophil action of IL-12 in human polip culture, Pneumonol Alergol, 72, pp. 14-18, (2004)
  26. Mastruzzo C, Greco LR, Nakano K, Nakano A, Palermo F, Pistorio MP, Et al., Impact of intranasal budesonide on immune inflammatory responses and epithelial remodeling in chronic upper airway inflammation, J Allergy Clin Immunol, 112, 1, pp. 37-44, (2003)
  27. Xie K., Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 2001;12(04):375–391. 28. Bachi ALL, Rios FJO, Vaisberg PHC, Martins M, de Sá MC, Victorino AB et al. Neuro-immunoendocrine modulation in marathon runners, 22
  28. Chen YS, Arab SF, Westhofen M, Lorenzen J., Expression of interleukin-5, interleukin-8, and interleukin-10 mRNA in the osteomeatal complex in nasal polyposis, Am J Rhinol, 19, 2, pp. 117-123, (2005)
  29. Allen JS, Eisma R, Leonard G, Lafreniere D, Kreutzer D., Interleukin-8 expression in human nasal polyps, Otolaryngol Head Neck Surg, 117, 5, pp. 535-541, (1997)
  30. Pezato R, Voegels RL, Stamm AC, Gregorio LC., Why we should avoid using inferior turbinate tissue as control to Nasal Polyposis studies, Acta Otolaryngol, 136, 9, pp. 973-975, (2016)