Exercise training and experimental myocardial ischemia and reperfusion: A systematic review and meta-analysis

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Autores
VEIGA, Eduardo Carvalho de Arruda
LEVY, Rozeli Ferreira
BOCALINI, Danilo Sales
CAVALLI, Ricardo Carvalho
SANTOS, Leonardo dos
Citação
IJC HEART & VASCULATURE, v.46, article ID 101214, 11p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Despite the success of interventional coronary reperfusion strategies, morbidity and mortality from acute myocardial infarction are still substantial. Physical exercise is a well-recognized effective nonpharmacological therapy for cardiovascular diseases. Therefore, the objective of this systematic review was to analyze studies in animal models of ischemia-reperfusion in association with physical exercise protocols.Search strategy: Articles published on the topic over a 13-year period (2010-2022) were searched in two databases (PubMed and Google Scholar) using the keywords exercise training, ischemia/reperfusion or ischemia reperfusion injury. Meta-analysis and quality assessment of the studies were performed using the Review Manager 5.3 program.Results: From the 238 articles retrieved from PubMed and 200 from Google Scholar, after screening and eligibility assessment, 26 articles were included in the systematic review and meta-analysis. For meta-analysis comparing the group of previously exercised animals with the non-exercised animals and then submitted to ischemia-reperfusion, the infarct size was significantly decreased by exercise (p < 0.00001). In addition, the group exercised had increased heart-to-body weight ratio (p < 0.00001) and improved ejection fraction as measured by echocardiography (p < 0.0004) in comparison to non-exercised animals.Conclusion: We concluded that the animal models of ischemia-reperfusion indicates that exercise reduce infarct size and preserve ejection fraction, associated with beneficial myocardial remodeling.
Palavras-chave
Exercise, Ischemia, reperfusion, Training, reperfusion injury, Cardio protection, Myocardial infarction
Referências
  1. Afousi AG, 2019, J CELL COMMUN SIGNAL, V13, P255, DOI 10.1007/s12079-018-0481-3
  2. Alleman RJ, 2016, AM J PHYSIOL-HEART C, V310, pH1360, DOI 10.1152/ajpheart.00858.2015
  3. Arriel RA, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17218161
  4. Arya S, 2021, JAMA SURG, V156, P789, DOI 10.1001/jamasurg.2021.0546
  5. Banaei P, 2020, BIOMED RES INT, V2020, DOI 10.1155/2020/4104965
  6. Bei YH, 2017, J CELL MOL MED, V21, P1648, DOI 10.1111/jcmm.13078
  7. Berstock JR, 2019, EFORT OPEN REV, V4, P213, DOI 10.1302/2058-5241.4.180049
  8. Calvert JW, 2011, CIRC RES, V108, P1448, DOI 10.1161/CIRCRESAHA.111.241117
  9. Curran J, 2019, J CARDIOVASC TRANSL, V12, P95, DOI 10.1007/s12265-019-9863-z
  10. Davidson S.M., 2021, CARDIOVASC RES, V117, P2161, DOI [10.1093/cvr, DOI 10.1093/cvr/cvab200]
  11. De Villiers C, 2020, DIS MODEL MECH, V13, DOI 10.1242/dmm.046565
  12. Doustar Y, 2012, CARDIOVASC J AFR, V23, P451, DOI 10.5830/CVJA-2012-050
  13. Farah C, 2010, AM J PHYSIOL-HEART C, V299, pH2076, DOI 10.1152/ajpheart.00835.2010
  14. Fatahi A, 2022, EXP GERONTOL, V162, DOI 10.1016/j.exger.2022.111758
  15. França GD, 2020, LIFE SCI, V256, DOI 10.1016/j.lfs.2020.117920
  16. Frasier CR, 2011, J APPL PHYSIOL, V111, P1751, DOI 10.1152/japplphysiol.01214.2010
  17. Ghahremani R, 2018, LIFE SCI, V213, P102, DOI 10.1016/j.lfs.2018.10.035
  18. Gunata M, 2021, CELL BIOCHEM FUNCT, V39, P190, DOI 10.1002/cbf.3587
  19. Guo YR, 2021, INT J CARDIOL, V340, P68, DOI 10.1016/j.ijcard.2021.08.021
  20. Harada T, 2022, J CARDIOVASC DEV DIS, V9, DOI 10.3390/jcdd9030087
  21. Hennessy EA, 2019, APPL PSYCHOL-HLTH WE, V11, P353, DOI 10.1111/aphw.12169
  22. Heusch G, 2020, NAT REV CARDIOL, V17, P773, DOI 10.1038/s41569-020-0403-y
  23. Higgins JPT, 2022, Chapter 10: Analysing Data and Undertaking Meta-analyses
  24. Hjortbak MV, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0240866
  25. Hooijmans CR, 2014, BMC MED RES METHODOL, V14, DOI 10.1186/1471-2288-14-43
  26. Leoni G, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.01342
  27. Li H, 2022, FRONT PHYSIOL, V13, DOI 10.3389/fphys.2022.879214
  28. Li YJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114205
  29. Martin TP, 2022, BRIT J PHARMACOL, V179, P770, DOI 10.1111/bph.15595
  30. McGinnis GR, 2015, AM J PHYSIOL-HEART C, V308, pH1423, DOI 10.1152/ajpheart.00850.2014
  31. McIntyre WF, 2020, AM J CARDIOL, V125, P1770, DOI 10.1016/j.amjcard.2020.03.020
  32. Moreira JBN, 2020, NAT METAB, V2, P829, DOI 10.1038/s42255-020-0262-1
  33. Muka T, 2020, EUR J EPIDEMIOL, V35, P49, DOI 10.1007/s10654-019-00576-5
  34. Nagueh SF, 2021, CARDIOVASC RES, V117, P999, DOI 10.1093/cvr/cvaa228
  35. Nicholson CK, 2013, J MOL CELL CARDIOL, V64, P1, DOI 10.1016/j.yjmcc.2013.08.002
  36. Page MJ, 2021, PLOS MED, V18, DOI [10.1371/journal.pmed.1003583, 10.1136/bmj.n71]
  37. Parry TL, 2018, METABOLOMICS, V14, DOI 10.1007/s11306-017-1303-y
  38. Qin XM, 2020, AM J CARDIOL, V125, P1471, DOI 10.1016/j.amjcard.2020.02.025
  39. Quindry JC, 2021, AM J CARDIOL, V148, P8, DOI 10.1016/j.amjcard.2021.02.030
  40. Quindry JC, 2012, J APPL PHYSIOL, V113, P498, DOI 10.1152/japplphysiol.00957.2011
  41. Ramez M, 2019, BMC CARDIOVASC DISOR, V19, DOI 10.1186/s12872-019-1090-7
  42. Rangel F.O.D, 2021, INT J CARDIOVASC SCI, V35, P113
  43. Ranjbar K, 2022, CARDIOVASC TOXICOL, V22, P736, DOI 10.1007/s12012-022-09752-8
  44. Riehle C., SMALL ANIMAL MODELS, DOI [10.1093/cvr/cvz161/5523845, DOI 10.1093/CVR/CVZ161/5523845]
  45. Sayevand Z, 2022, SPORT SCI HLTH, V18, P1011, DOI 10.1007/s11332-021-00886-w
  46. Scholz KH, 2021, OPEN HEART, V8, DOI 10.1136/openhrt-2021-001650
  47. Shi J, 2017, THERANOSTICS, V7, P664, DOI 10.7150/thno.15162
  48. Souissi A, 2021, LIFE SCI, V287, DOI 10.1016/j.lfs.2021.120109
  49. Szyller J, 2021, OXID MED CELL LONGEV, V2021, DOI 10.1155/2021/6678457
  50. Thijssen DHJ, 2022, J PHYSIOL-LONDON, V600, P1339, DOI 10.1113/JP282000
  51. Veiga ECA, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.00157
  52. Wang DW, 2021, J INFLAMM RES, V14, P1283, DOI 10.2147/JIR.S300997
  53. Wang WW, 2014, OXID MED CELL LONGEV, V2014, DOI 10.1155/2014/457429
  54. Wu YS, 2021, LIFE SCI, V264, DOI 10.1016/j.lfs.2020.118628