Changes in Skeletal Muscle Protein Metabolism Signaling Induced by Glutamine Supplementation and Exercise

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
JR, Carlos Flores Rodrigues
GERLINGER-ROMERO, Frederico
NACHBAR, Renato Tadeu
MARZUCA-NASSR, Gabriel Nasri
GORJAO, Renata
VITZEL, Kaio Fernando
HIRABARA, Sandro Massao
PITHON-CURI, Tania Cristina
CURI, Rui
Citação
NUTRIENTS, v.15, n.22, article ID 4711, 15p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aim: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. Methods: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80 degrees incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. Results: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. Conclusion: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.
Palavras-chave
physical exercise, hypertrophy, pS6, proteasome, 4E-BP-1, 26S proteasome
Referências
  1. de Vasconcelos DAA, 2019, J NUTR BIOCHEM, V70, P202, DOI 10.1016/j.jnutbio.2019.05.010
  2. Amirato GR, 2021, NUTRIENTS, V13, DOI 10.3390/nu13031025
  3. Anthony JC, 2000, J NUTR, V130, P139, DOI 10.1093/jn/130.2.139
  4. Bodine SC, 2001, SCIENCE, V294, P1704, DOI 10.1126/science.1065874
  5. Boza JJ, 2001, NUTRITION, V17, P35, DOI 10.1016/S0899-9007(00)00505-0
  6. Chaillou T, 2020, MECH AGEING DEV, V187, DOI 10.1016/j.mad.2020.111228
  7. Churchill EN, 2010, CARDIOVASC RES, V85, P385, DOI 10.1093/cvr/cvp334
  8. Coëffier M, 2003, AM J PHYSIOL-GASTR L, V285, pG266, DOI 10.1152/ajpgi.00385.2002
  9. de Souza DR, 2020, PHARMANUTRITION, V14, DOI 10.1016/j.phanu.2020.100236
  10. de Vasconcelos Diogo Antonio Alves, 2019, Cell Physiol Biochem, V53, P200, DOI 10.33594/000000130
  11. Dohl J, 2020, NUTR RES, V84, P42, DOI 10.1016/j.nutres.2020.09.006
  12. Duncan ND, 1998, EUR J APPL PHYSIOL O, V77, P372, DOI 10.1007/s004210050347
  13. Durán RV, 2012, MOL CELL, V47, P349, DOI 10.1016/j.molcel.2012.05.043
  14. Ellis AC, 2019, J DIET SUPPL, V16, P281, DOI 10.1080/19390211.2018.1454568
  15. Escobar J, 2005, AM J PHYSIOL-ENDOC M, V288, pE914, DOI 10.1152/ajpendo.00510.2004
  16. Frost RA, 2011, PHYSIOLOGY, V26, P83, DOI 10.1152/physiol.00044.2010
  17. GARNER RP, 1991, J APPL PHYSIOL, V71, P1627, DOI 10.1152/jappl.1991.71.4.1627
  18. Glass DJ, 2010, CURR OPIN CLIN NUTR, V13, P225, DOI 10.1097/MCO.0b013e32833862df
  19. Glass DJ, 2005, INT J BIOCHEM CELL B, V37, P1974, DOI 10.1016/j.biocel.2005.04.018
  20. Glass DJ, 2003, TRENDS MOL MED, V9, P344, DOI 10.1016/S1471-4914(03)00138-2
  21. Gomes MD, 2001, P NATL ACAD SCI USA, V98, P14440, DOI 10.1073/pnas.251541198
  22. Gordon E E, 1967, Arch Phys Med Rehabil, V48, P577
  23. Guttridge DC, 2004, CURR OPIN CLIN NUTR, V7, P443, DOI 10.1097/01.mco.0000134364.61406.26
  24. Hara K, 2002, CELL, V110, P177, DOI 10.1016/S0092-8674(02)00833-4
  25. Heck RW, 1996, MED SCI SPORT EXER, V28, P877, DOI 10.1097/00005768-199607000-00015
  26. Hirabara SM, 2013, J NUTR BIOCHEM, V24, P1136, DOI 10.1016/j.jnutbio.2012.08.014
  27. Hornberger TA, 2004, CAN J APPL PHYSIOL, V29, P16, DOI 10.1139/h04-002
  28. JAWEED MM, 1977, J ANAT, V124, P371
  29. Kelty TJ, 2019, J APPL PHYSIOL, V127, P254, DOI 10.1152/japplphysiol.00249.2019
  30. Kim SG, 2013, MOL CELL, V49, P172, DOI 10.1016/j.molcel.2012.10.003
  31. Kimball SR, 2004, BIOCHEM BIOPH RES CO, V313, P423, DOI 10.1016/j.bbrc.2003.07.014
  32. KLITGAARD H, 1988, J APPL PHYSIOL, V64, P1740, DOI 10.1152/jappl.1988.64.4.1740
  33. KLITGAARD H, 1990, ACTA PHYSIOL SCAND, V140, P175, DOI 10.1111/j.1748-1716.1990.tb08989.x
  34. Lai KMV, 2004, MOL CELL BIOL, V24, P9295, DOI 10.1128/MCB.24.21.9295-9304.2004
  35. Lambertucci AC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050390
  36. Lim CH, 2018, PHYSIOL REP, V6, DOI 10.14814/phy2.13725
  37. MACLENNAN PA, 1987, FEBS LETT, V215, P187, DOI 10.1016/0014-5793(87)80139-4
  38. MACLENNAN PA, 1988, FEBS LETT, V237, P133, DOI 10.1016/0014-5793(88)80186-8
  39. Marni D.B., 2019, Am. J. Physiol. Cell Physiol, V317, P629
  40. Marzuca-Nassr GN, 2019, BRAZ J MED BIOL RES, V52, DOI [10.1590/1414-431X20198391, 10.1590/1414-431x20198391]
  41. Marzuca-Nassr GN, 2017, NUTRIENTS, V9, DOI 10.3390/nu9101100
  42. Neu J, 1996, FASEB J, V10, P829, DOI 10.1096/fasebj.10.8.8666159
  43. Newsholme P, 2003, CELL BIOCHEM FUNCT, V21, P1, DOI 10.1002/cbf.1003
  44. Newsholme P, 2003, BRAZ J MED BIOL RES, V36, P153, DOI 10.1590/S0100-879X2003000200002
  45. Nicklin P, 2009, CELL, V136, P521, DOI 10.1016/j.cell.2008.11.044
  46. Padilha CS, 2019, LIFE SCI, V238, DOI 10.1016/j.lfs.2019.116964
  47. Pasiakos SM, 2012, NUTRIENTS, V4, P740, DOI 10.3390/nu4070740
  48. Peres FP, 2023, FRONT SPORTS ACT LIV, V4, DOI 10.3389/fspor.2022.1011240
  49. Proud CG, 2003, CURR TOP MICROBIOL, V279, P215
  50. Rogero MM, 2004, NUTR RES, V24, P261, DOI 10.1016/j.nutres.2003.11.002
  51. Roy RR, 1997, ANAT RECORD, V247, P170, DOI 10.1002/(SICI)1097-0185(199702)247:2<170::AID-AR3>3.0.CO;2-1
  52. Saha AK, 2010, DIABETES, V59, P2426, DOI 10.2337/db09-1870
  53. Sarbassov DD, 2005, SCIENCE, V307, P1098, DOI 10.1126/science.1106148
  54. Schiaffino S, 2011, PHYSIOL REV, V91, P1447, DOI 10.1152/physrev.00031.2010
  55. Schiaffino S, 2011, SKELET MUSCLE, V1, DOI 10.1186/2044-5040-1-4
  56. Song WX, 2020, ACTA PHARMACOL SIN B, V10, P61, DOI 10.1016/j.apsb.2019.12.006
  57. Sugita H, 2005, AM J PHYSIOL-ENDOC M, V288, pE585, DOI 10.1152/ajpendo.00321.2004
  58. Suryawan A, 2011, J ANIM SCI, V89, P2004, DOI 10.2527/jas.2010-3400
  59. Tajan M, 2018, CELL METAB, V28, P721, DOI 10.1016/j.cmet.2018.07.005
  60. TAMAKI T, 1992, MED SCI SPORT EXER, V24, P881
  61. Tan HWS, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00369-y
  62. Torrazza RM, 2010, J NUTR, V140, P2145, DOI 10.3945/jn.110.128421
  63. Weigl LG, 2012, CURR OPIN PHARMACOL, V12, P377, DOI 10.1016/j.coph.2012.02.017
  64. WONG TS, 1988, J APPL PHYSIOL, V65, P950, DOI 10.1152/jappl.1988.65.2.950
  65. Yao K, 2008, J NUTR, V138, P867, DOI 10.1093/jn/138.5.867
  66. YARASHESKI KE, 1990, J APPL PHYSIOL, V69, P434, DOI 10.1152/jappl.1990.69.2.434
  67. Yin LJ, 2020, NUTR METAB, V17, DOI 10.1186/s12986-020-00446-y
  68. Yonamine CY, 2014, ACTA PHYSIOL, V212, P62, DOI 10.1111/apha.12336
  69. Zanchi NE, 2009, EUR J APPL PHYSIOL, V106, P415, DOI 10.1007/s00421-009-1033-6
  70. Zheng Li-Fang, 2019, Shengli Xuebao, V71, P671, DOI 10.13294/j.aps.2019.0021
  71. Zoncu R, 2011, NAT REV MOL CELL BIO, V12, P21, DOI 10.1038/nrm3025