Diagnostic reference level quantities for adult chest and abdomen-pelvis CT examinations: correlation with organ doses

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER WIEN
Autores
Citação
INSIGHTS INTO IMAGING, v.14, n.1, article ID 60, 13p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
ObjectivesTo evaluate correlations between DRL quantities (DRLq) stratified into patient size groups for non-contrast chest and abdomen-pelvis CT examinations in adult patients and the corresponding organ doses.MethodsThis study presents correlations between DRLq (CTDIvol, DLP and SSDE) stratified into patient size ranges and corresponding organ doses shared in four groups: inside, peripheral, distributed and outside. The demographic, technical and dosimetric parameters were used to identify the influence of these quantities in organ doses. A robust statistical method was implemented in order to establish these correlations and its statistical significance.ResultsMedian values of the grouped organ doses are presented according to the effective diameter ranges. Organ doses in the regions inside the imaged area are higher than the organ doses in peripheral, distributed and outside regions, excepted to the peripheral doses associated with chest examinations. Different levels of statistical significance between organ doses and the DRLq were presented.ConclusionsCorrelations between DRLq and target-organ doses associated with clinical practice can support guidance's to the establishment of optimization criteria. SSDE demonstrated to be significant in the evaluation of organ doses is also highlighted. The proposed model allows the design of optimization actions with specific risk-reduction results.
Palavras-chave
Organ doses, Computed tomography, Chest, Abdomen-pelvis, Statistics
Referências
  1. AAPM, 2021, AM ASS PHYS MED ISS
  2. Andersson J, 2019, Estimating patient organ dosewith computed tomography: a review of present methodologyand required DICOM information: a joint report ofAAPM task group 246 and the European Federationof Organizations for Medical Physics (EFOMP)
  3. [Anonymous], 1996, ICRP PUBL
  4. [Anonymous], 2007, ICRP
  5. [Anonymous], 2017, ICRP PUBL
  6. Arnold TB, 2011, R J, V3, P34
  7. Barreto I, 2018, MED PHYS, V45, pE600
  8. Bos D, 2022, EUR RADIOL, V32, P1971, DOI 10.1007/s00330-021-08266-1
  9. Franck C, 2016, EUR RADIOL, V26, P2646, DOI 10.1007/s00330-015-4091-7
  10. Geyer AM, 2014, PHYS MED BIOL, V59, P5225, DOI 10.1088/0031-9155/59/18/5225
  11. Giansante L, 2019, J APPL CLIN MED PHYS, V20, P308, DOI 10.1002/acm2.12505
  12. Gottumukkala RV, 2019, RADIOGRAPHICS, V39, P709, DOI 10.1148/rg.2019180082
  13. Hardy AJ, 2021, MED PHYS, V48, P6160, DOI 10.1002/mp.15128
  14. ICRP, 2021, ICRP PUBL, V147
  15. Kalra MK, 2015, RADIOGRAPHICS, V35, P1706, DOI 10.1148/rg.2015150118
  16. Kanal KM, 2017, RADIOLOGY, V284, P120, DOI 10.1148/radiol.2017161911
  17. Lee C, 2015, J RADIOL PROT, V35, P891, DOI 10.1088/0952-4746/35/4/891
  18. Lee C, 2010, PHYS MED BIOL, V55, P339, DOI 10.1088/0031-9155/55/2/002
  19. Li X, 2014, PHYS MED BIOL, V59, P4525, DOI 10.1088/0031-9155/59/16/4525
  20. Long DJ, 2013, MED PHYS, V40, DOI 10.1118/1.4771934
  21. Muncy NM, 2022, NEUROIMAGE-CLIN, V33, DOI 10.1016/j.nicl.2022.102937
  22. Mundo AI, 2021, BIORXIV
  23. Murase H, 2009, ICES J MAR SCI, V66, P1417, DOI 10.1093/icesjms/fsp105
  24. Parakh A, 2016, RADIOLOGY, V280, P663, DOI 10.1148/radiol.2016151173
  25. Paulo G, 2020, INSIGHTS IMAGING, V11, DOI 10.1186/s13244-020-00899-y
  26. Ria F, 2022, INSIGHTS IMAGING, V13, DOI 10.1186/s13244-022-01155-1
  27. Ria F, 2021, EUR RADIOL, V31, P7022, DOI 10.1007/s00330-021-07753-9
  28. Samei E, 2018, J RADIOL PROT, V38, P967, DOI 10.1088/1361-6498/aac575
  29. Shrimpton PC, 1989, SUGGESTED GUIDELINE
  30. Stasinopoulos DM, 2007, J STAT SOFTW, V23
  31. Strauss KJ, 2019, RADIOLOGY, V291, P157, DOI 10.1148/radiol.2019181753
  32. Strauss KJ, 2017, RADIOLOGY, V284, P219, DOI 10.1148/radiol.2017161530
  33. Taylor S, 2017, EUR RADIOL, V27, P365, DOI 10.1007/s00330-016-4333-3
  34. Wood S.N, 2017, Generalized additive models: an introduction with R
  35. Yang K, 2018, RADIOLOGY, V289, P150, DOI 10.1148/radiol.2018172945
  36. Zewde N, 2022, EUR J RADIOL, V149, DOI 10.1016/j.ejrad.2022.110224