Metagenomic of Liver Tissue Identified at Least Two Genera of Totivirus-like Viruses in <i>Molossus molossus</i> Bats

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
COUTO, Roseane da Silva
RAMOS, Endrya do Socorro Foro
ABREU, Wandercleyson Uchoa
RODRIGUES, Luis Reginaldo Ribeiro
MARINHO, Luis Fernando
VILLANOVA, Fabiola
PANDEY, Ramendra Pati
DENG, Xutao
DELWART, Eric
Citação
MICROORGANISMS, v.12, n.1, article ID 206, 14p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The Totiviridae family of viruses has a unique genome consisting of double-stranded RNA with two open reading frames that encode the capsid protein (Cap) and the RNA-dependent RNA polymerase (RdRpol). Most virions in this family are isometric in shape, approximately 40 nm in diameter, and lack an envelope. There are five genera within this family, including Totivirus, Victorivirus, Giardiavirus, Leishmaniavirus, and Trichomonasvirus. While Totivirus and Victorivirus primarily infect fungi, Giardiavirus, Leishmaniavirus, and Trichomonasvirus infect diverse hosts, including protists, insects, and vertebrates. Recently, new totivirus-like species have been discovered in fish and plant hosts, and through metagenomic analysis, a novel totivirus-like virus (named Tianjin totivirus) has been isolated from bat guano. Interestingly, Tianjin totivirus causes cytopathic effects in insect cells but cannot grow in mammalian cells, suggesting that it infects insects consumed by insectivorous bats. In this study, we used next-generation sequencing and identified totivirus-like viruses in liver tissue from Molossus molossus bats in the Amazon region of Brazil. Comparative phylogenetic analysis based on the RNA-dependent RNA polymerase region revealed that the viruses identified in Molossus bats belong to two distinct phylogenetic clades, possibly comprising different genera within the Totiviridae family. Notably, the mean similarity between the Tianjin totivirus and the totiviruses identified in Molossus bats is less than 18%. These findings suggest that the diversity of totiviruses in bats is more extensive than previously recognized and highlight the potential for bats to serve as reservoirs for novel toti-like viruses.
Palavras-chave
metagenomics, totivirus, bats, molossus, amazon region
Referências
  1. Pierle SA, 2022, VIRUSES-BASEL, V14, DOI 10.3390/v14020202
  2. Campos ACA, 2019, EMERG INFECT DIS, V25, P333, DOI 10.3201/eid2502.181246
  3. Armero A, 2022, VIRUSES-BASEL, V14, DOI 10.3390/v14091899
  4. Asano KM, 2016, VIROL J, V13, DOI 10.1186/s12985-016-0569-4
  5. Góes LGB, 2016, INFECT GENET EVOL, V44, P510, DOI 10.1016/j.meegid.2016.07.034
  6. Bittar C, 2020, MICROB ECOL, V79, P203, DOI 10.1007/s00248-019-01391-x
  7. Brook CE, 2015, TRENDS MICROBIOL, V23, P172, DOI 10.1016/j.tim.2014.12.004
  8. Buchfink B, 2015, NAT METHODS, V12, P59, DOI 10.1038/nmeth.3176
  9. Bueno LM, 2022, TRANSBOUND EMERG DIS, V69, pE2863, DOI 10.1111/tbed.14636
  10. Burrows JTA, 2020, J VIROL, V94, DOI 10.1128/JVI.00623-20
  11. Call L, 2021, ANNU REV BIOMED DA S, V4, P369, DOI 10.1146/annurev-biodatasci-012221-095114
  12. Canuti M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029140
  13. Castelo-Branco DSCM, 2023, MICROB PATHOGENESIS, V177, DOI 10.1016/j.micpath.2023.106032
  14. Castón JR, 2006, VIROLOGY, V347, P323, DOI 10.1016/j.virol.2005.11.038
  15. Cibulski SP, 2021, ARCH VIROL, V166, P207, DOI 10.1007/s00705-020-04825-x
  16. Cibulski SP, 2014, GENOME ANNOUNCEMENTS, V2, DOI 10.1128/genomeA.01028-14
  17. Corman VM, 2013, J GEN VIROL, V94, P1984, DOI 10.1099/vir.0.054841-0
  18. de Araujo Jansen, 2012, BMC Research Notes, V5, P690, DOI 10.1186/1756-0500-5-690
  19. Lima FED, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118070
  20. Lima FED, 2013, VIRUS GENES, V47, P378, DOI 10.1007/s11262-013-0947-6
  21. Deng XT, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv002
  22. Donaldson EF, 2010, J VIROL, V84, P13004, DOI 10.1128/JVI.01255-10
  23. Drexler JF, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms1796
  24. Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075
  25. Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340
  26. Fauver JR, 2016, VIROLOGY, V498, P288, DOI 10.1016/j.virol.2016.07.031
  27. FELSENSTEIN J, 1981, J MOL EVOL, V17, P368, DOI 10.1007/BF01734359
  28. Ramos EDF, 2023, VIRUSES-BASEL, V15, DOI 10.3390/v15030606
  29. Fraga J, 2012, INFECT GENET EVOL, V12, P113, DOI 10.1016/j.meegid.2011.10.020
  30. Goodman RP, 2011, ARCH VIROL, V156, P171, DOI 10.1007/s00705-010-0832-8
  31. Guo LF, 2016, ARCH VIROL, V161, P731, DOI 10.1007/s00705-015-2716-4
  32. Hahn MA, 2020, ISME J, V14, P1755, DOI 10.1038/s41396-020-0642-2
  33. Hu D, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-11384-w
  34. Janssen MEW, 2015, J VIROL, V89, P1182, DOI 10.1128/JVI.02745-14
  35. Jung Kirsten, 2016, P13
  36. Katoh K, 2013, MOL BIOL EVOL, V30, P772, DOI 10.1093/molbev/mst010
  37. Khalifa ME, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.02318
  38. Kohl C, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-86435-4
  39. Koyama S, 2015, J GEN VIROL, V96, P1930, DOI 10.1099/vir.0.000126
  40. Kumar S, 2018, MOL BIOL EVOL, V35, P1547, DOI 10.1093/molbev/msy096
  41. Nguyen LT, 2015, MOL BIOL EVOL, V32, P268, DOI 10.1093/molbev/msu300
  42. Li F, 2020, ARCH MICROBIOL, V202, P807, DOI 10.1007/s00203-019-01788-9
  43. Lovoll M, 2010, VIROL J, V7, DOI 10.1186/1743-422X-7-309
  44. Luis AD, 2015, ECOL LETT, V18, P1153, DOI 10.1111/ele.12491
  45. Mor SK, 2016, ARCH VIROL, V161, P2227, DOI 10.1007/s00705-016-2906-8
  46. Moratelli R, 2015, MEM I OSWALDO CRUZ, V110, P1, DOI 10.1590/0074-02760150048
  47. Muhire BM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108277
  48. Okamoto K, 2016, SCI REP-UK, V6, DOI 10.1038/srep33170
  49. Okonechnikov K, 2012, BIOINFORMATICS, V28, P1166, DOI 10.1093/bioinformatics/bts091
  50. Olival KJ, 2015, BATS AND VIRUSES, P281, DOI [DOI 10.1002/9781118818824.CH11, 10.1002/9781118818824.ch11]
  51. Olivier T, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16240-6
  52. Park YJ, 2005, VIRUS RES, V109, P71, DOI 10.1016/j.virusres.2004.10.011
  53. Piló LB, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0267870
  54. Plowright RK, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2124
  55. Procházková M, 2021, J VIROL, V95, DOI 10.1128/JVI.01957-20
  56. Qu JJ, 2021, ARCH VIROL, V166, P1801, DOI 10.1007/s00705-021-05054-6
  57. Rambaut A, 2018, SYST BIOL, V67, P901, DOI 10.1093/sysbio/syy032
  58. Razafindratsimandresy R, 2009, J GEN VIROL, V90, P44, DOI 10.1099/vir.0.006825-0
  59. Salmier A, 2017, PLOS ONE, V12, DOI [10.1371/Journal.pone.0186943, 10.1371/journal.pone.0186943]
  60. Sandlund L, 2021, VIRUSES-BASEL, V13, DOI 10.3390/v13061063
  61. Totiviridae, ICTV
  62. Van Brussel K, 2022, CURR OPIN VIROL, V52, P192, DOI 10.1016/j.coviro.2021.12.008
  63. van der Poel WHM, 2006, VECTOR-BORNE ZOONOT, V6, P315, DOI 10.1089/vbz.2006.6.315
  64. Wallau GL, 2023, MICROBIOL SPECTR, V11, DOI 10.1128/spectrum.04077-22
  65. Wang H, 2022, VIROLOGY, V576, P127, DOI 10.1016/j.virol.2022.09.010
  66. Wu ZQ, 2016, ISME J, V10, P609, DOI 10.1038/ismej.2015.138
  67. Yang XL, 2012, ARCH VIROL, V157, P1093, DOI 10.1007/s00705-012-1278-y
  68. Zhai Y, 2010, J GEN VIROL, V91, P2836, DOI 10.1099/vir.0.024794-0
  69. Zhang RJ, 2015, ARCH VIROL, V160, P1805, DOI 10.1007/s00705-015-2420-4
  70. Zhao ML, 2022, FRONT MICROBIOL, V13, DOI 10.3389/fmicb.2022.855750