Physiological responses during walking in men and women with intermittent claudication

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
INST ISRAELITA ENSINO & PESQUISA ALBERT EINSTEIN
Autores
MIYASATO, Roberto Sanches
FELIX, Alex Jesus
ANDRADE-LIMA, Aluisio
SILVA, Natan Daniel da
RITTI-DIAS, Raphael Mendes
CORNELISSEN, Veronique
GOESSLER, Karla Fabiana
FORJAZ, Claudia Lucia de Moraes
Citação
EINSTEIN-SAO PAULO, v.21, article ID eAO0120, 8p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: Peak oxygen consumption (VO2peak), anaerobic threshold, walking economy, and cardiovascular responses during walking are used to guide and monitor walking training in patients with peripheral artery disease and intermittent claudication. Women with peripheral artery disease and intermittent claudication present greater impairments than men, and evaluating training markers according to sex for decisions regarding walking prescription in this population is important. This study aimed to compare VO2peak, walking economy, anaerobic threshold, and cardiovascular responses during walking in men and women with peripheral artery disease and intermittent claudication. Methods: Forty patients (20 men and 20 women with similar baseline characteristics) underwent a cardiopulmonary treadmill test (3.2km/h and 2% increase in slope every 2 minutes until maximal leg pain). The VO2 and rate-pressure product were assessed. Data from men and women were compared using t-tests. Results: There were no significant differences between men and women (VO2peak: 15.0 +/- 4.8 versus 13.9 +/- 2.9mL center dot kg-1 center dot min-1, p=0.38; walking economy: 9.6 +/- 2.7 versus 8.4 +/- 1.6mL center dot kg-1 center dot min-1, p=0.09; anaerobic threshold: 10.5 +/- 3.2 versus 10.5 +/- 2.2mL center dot kg-1 center dot min-1, p=0.98; rate pressure product at 1st stage: 13,465 +/- 2,910 versus 14,445 +/- 4,379bpm center dot mmHg, p=0.41; and rate pressure product at anaerobic threshold:13,673 +/- 3,100 versus 16,390 +/- 5,870bpm center dot mmHg, p=0.08 and rate pressure product at peak exercise: 21,253 +/- 6,141 versus 21,923 +/- 7,414bpm center dot mmHg, p=0.76, respectively). Conclusion: Men and women with peripheral artery disease and similar baseline characteristics presented similar responses to walking, suggesting that decisions regarding walking prescription and monitoring can be made regardless of sex in this specific population.
Palavras-chave
Peripheral arterial disease, Exercise, Oxygen consumption, Heart rate, Blood pressure
Referências
  1. Aboyans, 2013, CIRCULATION, V127, pE264, DOI 10.1161/CIR.0b013e3182806008
  2. Aboyans V, 2012, CIRCULATION, V126, P2890, DOI 10.1161/CIR.0b013e318276fbcb
  3. American College of Sports Medicine, 2020, ACSM's Guidelines for Exercise Testing and Prescription, P472
  4. Bakke EF, 2007, EUR J VASC ENDOVASC, V33, P20, DOI 10.1016/j.ejvs.2006.06.023
  5. Bauer TA, 1999, J APPL PHYSIOL, V87, P809, DOI 10.1152/jappl.1999.87.2.809
  6. Chehuen M, 2017, J SCI MED SPORT, V20, P886, DOI 10.1016/j.jsams.2017.02.011
  7. Chehuen MD, 2012, VASA, V41, P275, DOI [10.1024/0301-15626/a000203, 10.1024/0301-1526/a000203]
  8. Correia MA, 2020, J CARDIOPULM REHABIL, V40, P24, DOI 10.1097/HCR.0000000000000437
  9. Criqui M H, 1996, Vasc Med, V1, P65
  10. Crowther RG, 2012, VASC HEALTH RISK MAN, V8, P225, DOI 10.2147/VHRM.S30056
  11. Cucato Gabriel Grizzo, 2011, Rev. bras. cineantropom. desempenho hum., V13, P208, DOI 10.5007/1980-0037.2011v13n3p208
  12. Dipnarine K, 2016, VASCULAR, V24, P304, DOI 10.1177/1708538115592800
  13. Dörenkamp S, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146828
  14. Duscha BD, 2020, VASC MED, V25, P411, DOI 10.1177/1358863X20945794
  15. Farah BQ, 2015, MED SCI SPORT EXER, V47, P493, DOI 10.1249/MSS.0000000000000434
  16. FONTAINE R, 1954, Helv Chir Acta, V21, P499
  17. Gardner AW, 2018, ANGIOLOGY, V69, P416, DOI 10.1177/0003319717726934
  18. Gardner AW, 2002, MED SCI SPORT EXER, V34, P1695, DOI 10.1097/00005768-200211000-00001
  19. GARDNER AW, 1991, MED SCI SPORT EXER, V23, P402
  20. Gardner AW, 2000, J GERONTOL A-BIOL, V55, pM570, DOI 10.1093/gerona/55.10.M570
  21. Gommans LNM, 2015, J VASC SURG, V62, P681, DOI 10.1016/j.jvs.2015.03.076
  22. Hirsch AT, 2006, CIRCULATION, V113, pE463, DOI 10.1161/CIRCULATIONAHA.106.174526
  23. Leeper NJ, 2013, J VASC SURG, V57, P728, DOI 10.1016/j.jvs.2012.07.051
  24. McDermott MM, 2011, J AM COLL CARDIOL, V57, P707, DOI 10.1016/j.jacc.2010.09.042
  25. Mezzani A, 2013, EUR J PREV CARDIOL, V20, P442, DOI 10.1177/2047487312460484
  26. Miller AJ, 2017, J APPL PHYSIOL, V123, P1160, DOI 10.1152/japplphysiol.00431.2017
  27. Miyasato RS, 2021, ANN VASC SURG, V71, P9, DOI 10.1016/j.avsg.2020.07.051
  28. Norgren L, 2007, INT ANGIOL, V26, P81
  29. Oka RK, 2003, VASC MED, V8, P89, DOI 10.1191/1358863x03vm479oa
  30. Patel T, 2020, CARDIOVASC REVASCULA, V21, P404, DOI 10.1016/j.carrev.2019.05.026
  31. Pickering TG, 2005, CIRCULATION, V111, P697, DOI 10.1161/01.CIR.0000154900.76284.F6
  32. Ritti-Dias RM, 2009, J CARDIOPULM REHABIL, V29, P396, DOI 10.1097/HCR.0b013e3181b4ca38
  33. Sampson UKA, 2014, GLOB HEART, V9, P145, DOI 10.1016/j.gheart.2013.12.008
  34. Schramm K, 2018, SEMIN INTERVENT RAD, V35, P9, DOI 10.1055/s-0038-1636515
  35. Svedahl K, 2003, CAN J APPL PHYSIOL, V28, P299, DOI 10.1139/h03-023
  36. Womack C J, 1997, Vasc Med, V2, P174