The Exometabolome of <i>Xylella fastidiosa</i> in Contact with <i>Paraburkholderia phytofirmans</i> Supernatant Reveals Changes in Nicotinamide, Amino Acids, Biotin, and Plant Hormones

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorFEITOSA-JUNIOR, Oseias R.
dc.contributor.authorLUBBE, Andrea
dc.contributor.authorKOSINA, Suzanne M.
dc.contributor.authorMARTINS-JUNIOR, Joaquim
dc.contributor.authorBARBOSA, Deibs
dc.contributor.authorBACCARI, Clelia
dc.contributor.authorZAINI, Paulo A.
dc.contributor.authorBOWEN, Benjamin P.
dc.contributor.authorNORTHEN, Trent R.
dc.contributor.authorLINDOW, Steven E.
dc.contributor.authorSILVA, Aline M. da
dc.date.accessioned2024-04-05T19:46:27Z
dc.date.available2024-04-05T19:46:27Z
dc.date.issued2024
dc.description.abstractMicrobial competition within plant tissues affects invading pathogens' fitness. Metabolomics is a great tool for studying their biochemical interactions by identifying accumulated metabolites. Xylella fastidiosa, a Gram-negative bacterium causing Pierce's disease (PD) in grapevines, secretes various virulence factors including cell wall-degrading enzymes, adhesion proteins, and quorum-sensing molecules. These factors, along with outer membrane vesicles, contribute to its pathogenicity. Previous studies demonstrated that co-inoculating X. fastidiosa with the Paraburkholderia phytofirmans strain PsJN suppressed PD symptoms. Here, we further investigated the interaction between the phytopathogen and the endophyte by analyzing the exometabolome of wild-type X. fastidiosa and a diffusible signaling factor (DSF) mutant lacking quorum sensing, cultivated with 20% P. phytofirmans spent media. Liquid chromatography-mass spectrometry (LC-MS) and the Method for Metabolite Annotation and Gene Integration (MAGI) were used to detect and map metabolites to genomes, revealing a total of 121 metabolites, of which 25 were further investigated. These metabolites potentially relate to host adaptation, virulence, and pathogenicity. Notably, this study presents the first comprehensive profile of X. fastidiosa in the presence of a P. phytofirmans spent media. The results highlight that P. phytofirmans and the absence of functional quorum sensing affect the ratios of glutamine to glutamate (Gln:Glu) in X. fastidiosa. Additionally, two compounds with plant metabolism and growth properties, 2-aminoisobutyric acid and gibberellic acid, were downregulated when X. fastidiosa interacted with P. phytofirmans. These findings suggest that P. phytofirmans-mediated disease suppression involves modulation of the exometabolome of X. fastidiosa, impacting plant immunity.eng
dc.description.indexPubMed
dc.description.indexScopus
dc.description.indexDimensions
dc.description.indexWoS
dc.description.sponsorshipSao Paulo Research Foundation (FAPESP) [08/11703-4]
dc.description.sponsorshipCoordination for the Improvement of Higher Education Personnel(CAPES) [88887.285065/2018-00, 88887.318125/2019-00]
dc.description.sponsorshipProgram Sandwich-Doctorate Abroad (PDSE) [99999.009713/2014-00]
dc.description.sponsorshipNational Council for Scientific and Technological Development (CNPq)
dc.description.sponsorshipOffice of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-SC0012627]
dc.description.sponsorshipU.S. Department of Energy Joint Genome Institute
dc.description.sponsorshipOffice of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
dc.identifier.citationMETABOLITES, v.14, n.2, article ID 82, 26p, 2024
dc.identifier.doi10.3390/metabo14020082
dc.identifier.eissn2218-1989
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/59296
dc.language.isoeng
dc.publisherMDPIeng
dc.relation.ispartofMetabolites
dc.rightsopenAccesseng
dc.rights.holderCopyright MDPIeng
dc.subjectXylella fastidiosaeng
dc.subjectParaburkholderia phytofirmanseng
dc.subjectmetabolomicseng
dc.subjectphytopathogeneng
dc.subjectliquid chromatography-mass spectrometryeng
dc.subjectMAGIeng
dc.subject.othergibberellin biosynthesiseng
dc.subject.othermetabolic footprinteng
dc.subject.otheraminobutyric-acideng
dc.subject.otherreverse-ecologyeng
dc.subject.othercolonizationeng
dc.subject.otherbacteriaeng
dc.subject.otherinsectseng
dc.subject.otherstraineng
dc.subject.othertooleng
dc.subject.otherresistanceeng
dc.subject.wosBiochemistry & Molecular Biologyeng
dc.titleThe Exometabolome of <i>Xylella fastidiosa</i> in Contact with <i>Paraburkholderia phytofirmans</i> Supernatant Reveals Changes in Nicotinamide, Amino Acids, Biotin, and Plant Hormoneseng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.affiliation.countryEstados Unidos
hcfmusp.affiliation.countryAlemanha
hcfmusp.affiliation.countryisode
hcfmusp.affiliation.countryisous
hcfmusp.author.externalFEITOSA-JUNIOR, Oseias R.:Univ Sao Paulo, Inst Chem, Dept Biochem, BR-05508900 Sao Paulo, SP, Brazil; DOE Joint Genome Inst, Berkeley, CA 94720 USA; Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA; Ludwig Maximilian Univ Munich, Genet, Bioctr, D-82152 Munich, Germany
hcfmusp.author.externalLUBBE, Andrea:Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA 94720 USA; Bioact Co, Brightseed, San Francisco, CA 94080 USA
hcfmusp.author.externalKOSINA, Suzanne M.:Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA 94720 USA
hcfmusp.author.externalMARTINS-JUNIOR, Joaquim:Univ Sao Paulo, Inst Chem, Dept Biochem, BR-05508900 Sao Paulo, SP, Brazil; Natl Ctr Energy & Mat Res CNPEN, Natl Biorenewables Lab, BR-13083100 Campinas, SP, Brazil
hcfmusp.author.externalBACCARI, Clelia:Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
hcfmusp.author.externalZAINI, Paulo A.:Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
hcfmusp.author.externalBOWEN, Benjamin P.:DOE Joint Genome Inst, Berkeley, CA 94720 USA; Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA 94720 USA
hcfmusp.author.externalNORTHEN, Trent R.:DOE Joint Genome Inst, Berkeley, CA 94720 USA; Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA 94720 USA
hcfmusp.author.externalLINDOW, Steven E.:Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
hcfmusp.author.externalSILVA, Aline M. da:Univ Sao Paulo, Inst Chem, Dept Biochem, BR-05508900 Sao Paulo, SP, Brazil
hcfmusp.citation.scopus0
hcfmusp.contributor.author-fmusphcDEIBS BARBOSA
hcfmusp.description.articlenumber82
hcfmusp.description.issue2
hcfmusp.description.volume14
hcfmusp.origemWOS
hcfmusp.origem.dimensionspub.1168251191
hcfmusp.origem.pubmed38392974
hcfmusp.origem.scopus2-s2.0-85185658500
hcfmusp.origem.wosWOS:001174021100001
hcfmusp.publisher.cityBASELeng
hcfmusp.publisher.countrySWITZERLANDeng
hcfmusp.relation.referenceAleksander SA, 2023, GENETICS, V224, DOI 10.1093/genetics/iyad031eng
hcfmusp.relation.referenceAnkrah NYD, 2020, J CHEM ECOL, V46, P735, DOI 10.1007/s10886-019-01136-7eng
hcfmusp.relation.referenceAshburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556eng
hcfmusp.relation.referenceAzevedo JL, 2016, GENET MOL BIOL, V39, P476, DOI [10.1590/1678-4685-GMB-2016-0056, 10.1590/1678-4685-gmb-2016-0056]eng
hcfmusp.relation.referenceBaccari C, 2019, PHYTOPATHOLOGY, V109, P248, DOI 10.1094/PHYTO-07-18-0245-FIeng
hcfmusp.relation.referenceBansal P, 2022, NUCLEIC ACIDS RES, V50, pD693, DOI 10.1093/nar/gkab1016eng
hcfmusp.relation.referenceBennett GM, 2015, P NATL ACAD SCI USA, V112, P10169, DOI 10.1073/pnas.1421388112eng
hcfmusp.relation.referenceBlock A, 2008, CURR OPIN PLANT BIOL, V11, P396, DOI 10.1016/j.pbi.2008.06.007eng
hcfmusp.relation.referenceBowen BP, 2010, J AM SOC MASS SPECTR, V21, P1471, DOI 10.1016/j.jasms.2010.04.003eng
hcfmusp.relation.referenceCariddi C, 2014, J PLANT PATHOL, V96, P425eng
hcfmusp.relation.referenceCarr R, 2012, BIOINFORMATICS, V28, P734, DOI 10.1093/bioinformatics/btr721eng
hcfmusp.relation.referenceCaserta R, 2017, MOL PLANT MICROBE IN, V30, P866, DOI 10.1094/MPMI-07-17-0167-Reng
hcfmusp.relation.referenceCaspi R, 2020, NUCLEIC ACIDS RES, V48, pD445, DOI 10.1093/nar/gkz862eng
hcfmusp.relation.referenceChatterjee S, 2008, ANNU REV PHYTOPATHOL, V46, P243, DOI 10.1146/annurev.phyto.45.062806.094342eng
hcfmusp.relation.referenceChen XL, 2022, FRONT PLANT SCI, V12, DOI 10.3389/fpls.2021.700200eng
hcfmusp.relation.referenceDaugherty MP, 2011, ECOL ENTOMOL, V36, P654, DOI 10.1111/j.1365-2311.2011.01309.xeng
hcfmusp.relation.referenceDe La Fuente L, 2022, ANNU REV PHYTOPATHOL, V60, P163, DOI 10.1146/annurev-phyto-021021-041716eng
hcfmusp.relation.referenceDe Silva NI, 2019, FUNGAL BIOL REV, V33, P133, DOI 10.1016/j.fbr.2018.10.001eng
hcfmusp.relation.referenceDelcher AL, 2002, NUCLEIC ACIDS RES, V30, P2478, DOI 10.1093/nar/30.11.2478eng
hcfmusp.relation.referenceDesprez-Loustau ML, 2021, FORESTRY, V94, P1, DOI 10.1093/forestry/cpaa029eng
hcfmusp.relation.referenceDouglas AE, 2017, CURR OPIN INSECT SCI, V23, P65, DOI 10.1016/j.cois.2017.07.012eng
hcfmusp.relation.referenceDrenos F, 2017, CURR OPIN LIPIDOL, V28, P99, DOI 10.1097/MOL.0000000000000393eng
hcfmusp.relation.referenceErbilgin O, 2019, ACS CHEM BIOL, V14, P704, DOI 10.1021/acschembio.8b01107eng
hcfmusp.relation.referenceFeitosa OR, 2019, PHYTOPATHOLOGY, V109, P1344, DOI 10.1094/PHYTO-03-19-0083-Reng
hcfmusp.relation.referenceFLYNN KJ, 1989, J PLANKTON RES, V11, P165, DOI 10.1093/plankt/11.1.165eng
hcfmusp.relation.referenceFROMMEL MI, 1991, PLANT PHYSIOL, V96, P928, DOI 10.1104/pp.96.3.928eng
hcfmusp.relation.referenceGotz S, 2008, NUCLEIC ACIDS RES, V36, P3420, DOI 10.1093/nar/gkn176eng
hcfmusp.relation.referenceGOWER JC, 1966, BIOMETRIKA, V53, P325, DOI 10.2307/2333639eng
hcfmusp.relation.referenceGrigoriev IV, 2012, NUCLEIC ACIDS RES, V40, pD26, DOI 10.1093/nar/gkr947eng
hcfmusp.relation.referenceHibi M, 2021, COMMUN BIOL, V4, DOI 10.1038/s42003-020-01555-3eng
hcfmusp.relation.referenceHuang WJ, 2020, MOL PLANT, V13, P1379, DOI 10.1016/j.molp.2020.08.010eng
hcfmusp.relation.referenceIonescu M, 2016, MBIO, V7, DOI 10.1128/mBio.01054-16eng
hcfmusp.relation.referenceIonescu M, 2014, P NATL ACAD SCI USA, V111, pE3910, DOI 10.1073/pnas.1414944111eng
hcfmusp.relation.referenceJacoby RP, 2018, MOL PLANT MICROBE IN, V31, P803, DOI [10.1094/MPMI-10-17-0253-R, 10.1094/mpmi-10-17-0253-r]eng
hcfmusp.relation.referenceJoo GJ, 2009, J MICROBIOL, V47, P167, DOI 10.1007/s12275-008-0273-1eng
hcfmusp.relation.referenceKim S, 2023, NUCLEIC ACIDS RES, V51, pD1373, DOI 10.1093/nar/gkac956eng
hcfmusp.relation.referenceKING EO, 1954, J LAB CLIN MED, V44, P301eng
hcfmusp.relation.referenceKosina SM, 2016, ACS SYNTH BIOL, V5, P569, DOI 10.1021/acssynbio.5b00236eng
hcfmusp.relation.referenceKreimer A, 2012, BIOINFORMATICS, V28, P2195, DOI 10.1093/bioinformatics/bts323eng
hcfmusp.relation.referenceKrugner R, 2019, AUSTRAL ENTOMOL, V58, P248, DOI 10.1111/aen.12397eng
hcfmusp.relation.referenceKvitko BH, 2023, PHYTOPATHOLOGY, V113, P626, DOI 10.1094/PHYTO-08-22-0292-KDeng
hcfmusp.relation.referenceLawson CE, 2019, NAT REV MICROBIOL, V17, P725, DOI 10.1038/s41579-019-0255-9eng
hcfmusp.relation.referenceLevy R, 2013, P NATL ACAD SCI USA, V110, P12804, DOI 10.1073/pnas.1300926110eng
hcfmusp.relation.referenceLevy R, 2012, ADV EXP MED BIOL, V751, P329, DOI 10.1007/978-1-4614-3567-9_15eng
hcfmusp.relation.referenceLindow S, 2024, PHYTOPATHOLOGY, DOI 10.1094/PHYTO-06-23-0219-Reng
hcfmusp.relation.referenceLiu R, 2021, MOLECULES, V26, DOI 10.3390/molecules26113311eng
hcfmusp.relation.referenceLu X, 2015, NEW PHYTOL, V206, P295, DOI 10.1111/nph.13187eng
hcfmusp.relation.referenceMerkel D, 2014, Linux J, V2014, P2eng
hcfmusp.relation.referenceMichelini S, 2018, MICROBIOME, V6, DOI 10.1186/s40168-018-0545-xeng
hcfmusp.relation.referenceMiotto-Vilanova L, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01236eng
hcfmusp.relation.referenceMitter B, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00120eng
hcfmusp.relation.referenceMoll L, 2021, FRONT MICROBIOL, V12, DOI 10.3389/fmicb.2021.753874eng
hcfmusp.relation.referenceMorris CE, 2019, ANNU REV PHYTOPATHOL, V57, P63, DOI 10.1146/annurev-phyto-082718-100034eng
hcfmusp.relation.referenceNagel R, 2017, NEW PHYTOL, V214, P1260, DOI 10.1111/nph.14441eng
hcfmusp.relation.referenceNascimento R, 2016, SCI REP-UK, V6, DOI 10.1038/srep18598eng
hcfmusp.relation.referenceNett RS, 2017, NAT CHEM BIOL, V13, P69, DOI [10.1038/NCHEMBIO.2232, 10.1038/nchembio.2232]eng
hcfmusp.relation.referenceNewman KL, 2004, P NATL ACAD SCI USA, V101, P1737, DOI 10.1073/pnas.0308399100eng
hcfmusp.relation.referenceNewman KL, 2003, APPL ENVIRON MICROB, V69, P7319, DOI 10.1128/AEM.69.12.7319-7327.2003eng
hcfmusp.relation.referenceNovelli S, 2019, J PLANT RES, V132, P439, DOI 10.1007/s10265-019-01108-8eng
hcfmusp.relation.referenceObata K, 2013, P JPN ACAD B-PHYS, V89, P139, DOI 10.2183/pjab.89.139eng
hcfmusp.relation.referencePajot E, 2001, EUR J PLANT PATHOL, V107, P861, DOI 10.1023/A:1013136608965eng
hcfmusp.relation.referenceParniske M, 2018, CURR OPIN PLANT BIOL, V44, P164, DOI 10.1016/j.pbi.2018.05.016eng
hcfmusp.relation.referencePHINNEY BO, 1956, P NATL ACAD SCI USA, V42, P185, DOI 10.1073/pnas.42.4.185eng
hcfmusp.relation.referenceRapicavoli J, 2018, MOL PLANT PATHOL, V19, P786, DOI 10.1111/mpp.12585eng
hcfmusp.relation.referenceRoper C, 2019, CURR OPIN PLANT BIOL, V50, P140, DOI 10.1016/j.pbi.2019.05.005eng
hcfmusp.relation.referenceRoper MC, 2007, MOL PLANT MICROBE IN, V20, P411, DOI 10.1094/MPMI-20-4-0411eng
hcfmusp.relation.referenceRyffel F, 2016, ISME J, V10, P632, DOI 10.1038/ismej.2015.141eng
hcfmusp.relation.referenceSalazar-Cerezo S, 2018, MICROBIOL RES, V208, P85, DOI 10.1016/j.micres.2018.01.010eng
hcfmusp.relation.referenceSaldanha LL, 2022, J AGR FOOD CHEM, DOI 10.1021/acs.jafc.2c05156eng
hcfmusp.relation.referenceSaponari M, 2014, J ECON ENTOMOL, V107, P1316, DOI 10.1603/EC14142eng
hcfmusp.relation.referenceSasek V, 2012, EUR J PLANT PATHOL, V133, P279, DOI 10.1007/s10658-011-9897-9eng
hcfmusp.relation.referenceSawana A, 2014, FRONT GENET, V5, DOI 10.3389/fgene.2014.00429eng
hcfmusp.relation.referenceSessitsch A, 2005, INT J SYST EVOL MICR, V55, P1187, DOI 10.1099/ijs.0.63149-0eng
hcfmusp.relation.referenceSicard A, 2018, ANNU REV PHYTOPATHOL, V56, P181, DOI 10.1146/annurev-phyto-080417-045849eng
hcfmusp.relation.referenceSmolka MB, 2003, PROTEOMICS, V3, P224, DOI 10.1002/pmic.200390031eng
hcfmusp.relation.referenceSue T, 2011, APPL ENVIRON MICROB, V77, P7605, DOI 10.1128/AEM.00469-11eng
hcfmusp.relation.referenceSumner LW, 2007, METABOLOMICS, V3, P211, DOI 10.1007/s11306-007-0082-2eng
hcfmusp.relation.referenceTudzynski B, 2005, APPL MICROBIOL BIOT, V66, P597, DOI 10.1007/s00253-004-1805-1eng
hcfmusp.relation.referenceUrbanová T, 2011, COLLECT CZECH CHEM C, V76, P1669, DOI 10.1135/cccc2011098eng
hcfmusp.relation.referencevan Hoogstraten SWG, 2023, CRIT REV MICROBIOL, DOI 10.1080/1040841X.2023.2223704eng
hcfmusp.relation.referenceVan Sluys MA, 2002, ANNU REV PHYTOPATHOL, V40, P169, DOI 10.1146/annurev.phyto.40.030402.090559eng
hcfmusp.relation.referenceVerbeeck N, 2020, MASS SPECTROM REV, V39, P245, DOI 10.1002/mas.21602eng
hcfmusp.relation.referenceVergine M, 2020, PATHOGENS, V9, DOI 10.3390/pathogens9090675eng
hcfmusp.relation.referenceVillas-Bôas SG, 2006, ANAL BIOCHEM, V349, P297, DOI 10.1016/j.ab.2005.11.019eng
hcfmusp.relation.referenceVillas-Boas SG, 2005, MASS SPECTROM REV, V24, P613, DOI 10.1002/mas.20032eng
hcfmusp.relation.referenceWang H, 2015, CHEM CENT J, V9, DOI 10.1186/s13065-015-0124-1eng
hcfmusp.relation.referenceWang N, 2012, PHYTOPATHOLOGY, V102, P1045, DOI 10.1094/PHYTO-07-12-0146-Reng
hcfmusp.relation.referenceWeilharter A, 2011, J BACTERIOL, V193, P3383, DOI 10.1128/JB.05055-11eng
hcfmusp.relation.referenceYang J, 2022, FRONT MICROBIOL, V13, DOI 10.3389/fmicb.2022.913349eng
hcfmusp.relation.referenceYao YS, 2015, METABOLITES, V5, P431, DOI 10.3390/metabo5030431eng
hcfmusp.relation.referenceZaini PA, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00771eng
hcfmusp.scopus.lastupdate2024-04-12
relation.isAuthorOfPublicationd0a2a991-04a9-4668-8303-b2fd5ea2770d
relation.isAuthorOfPublication.latestForDiscoveryd0a2a991-04a9-4668-8303-b2fd5ea2770d
Arquivos