Spatial data collection and qualification methods for urban parks in Brazilian capitals: An innovative roadmap

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
SLOVIC, Anne Dorothee
SALES, Denise Marques
ROCHA, Solimar Carnavalli
ANDRADE, Amanda Cristina de Souza
MARTINS, Lucas Soriano
COELHO, Debora Morais
FREITAS, Anderson
MORAN, Mika
Citação
PLOS ONE, v.18, n.8, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Urban parks have been studied for their effects on health and the environment. Accessing park data from reliable and comparable sources remains challenging, reinforcing the importance of standardized search tools, notably in Latin America. We designed a systematized methodology to identify processes of accessing, collecting, verifying, and harmonizing urban park spatial data in all Brazilian capitals included in the Urban Health in Latin America (SALURBAL) project. We developed a research protocol using official and non-official sources combining the results of Google Maps (GMaps) points and OpenStreetMap (OSM) polygons-GMaps-OSM. Descriptive analyses included the frequency of the distribution of parks before and after harmonization stratified by data source. We used the intraclass correlation coefficient (ICC) to assess agreement in the area between official and GMaps-OSM data. Official data were obtained for 16 cities; for the remaining 11 capitals, we used GMaps-OSM. After verification and harmonization, 302 urban parks were obtained from official data and 128 from GMaps-OSM. In a sub-study of the 16 cities with official data (n = 302 parks), we simulated a collection of non-official data using GMaps-OSM and OSM only. From GMaps-OSM, we obtained 142 parks, and from OSM, 230 parks. Statistical analysis showed a better agreement between official data and OSM. After completing verification and harmonization, the complete dataset (official and GMaps-OSM) included 430 urban parks with a total area of 145.14 km(2). The mean number of parks across cities was 16, with a mean size area of 0.33 km(2). The median number of parks was nine, with a median area of 0.07 km(2). This study highlights the importance of creating mechanisms to access, collect, harmonize, and verify urban park data, which is essential for examining the impact of parks on health. It also stresses the importance of providing reliable urban park spatial data for city officials.
Palavras-chave
Referências
  1. [Anonymous], 2019, OPENSTREETMAP CONTRI
  2. [Anonymous], 2000, BRASIL LEI NO 9 985
  3. Antoniou V., 2017, MAPPING CITIZEN SENS, P1, DOI [10.5334/bbf.a, DOI 10.5334/BBF.A]
  4. Cohen Deborah A, 2019, Rand Health Q, V8, P4
  5. Cohen P, 2014, APPL GEOGR, V48, P87, DOI 10.1016/j.apgeog.2014.01.006
  6. Vega CD, 2017, J PHYS ACT HEALTH, V14, P883, DOI 10.1123/jpah.2016-0394
  7. ESRI, 2009, REDL
  8. Fernández-Alvarez R, 2017, ECON SOC TERRIT, V17, P399, DOI 10.22136/est002017697
  9. Gianfredi V, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18105137
  10. Grilo F, 2020, SCI TOTAL ENVIRON, V724, DOI 10.1016/j.scitotenv.2020.138182
  11. Instituto Brasileiro de Geografia e Estatistica-IBGE, 2002, MAP CLIM BRAS
  12. Klingberg J, 2017, SCI TOTAL ENVIRON, V599, P1728, DOI 10.1016/j.scitotenv.2017.05.051
  13. Koo TK, 2016, J CHIROPR MED, V15, P155, DOI 10.1016/j.jcm.2016.02.012
  14. Le Texier M, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204684
  15. Macedo J, 2016, ENVIRON PLANN B, V43, P1096, DOI 10.1177/0265813515603369
  16. Maciel Raoni Gonçalves, 2019, Perspect. ciênc. inf., V24, P143, DOI 10.1590/1981-5344/3824
  17. Markevych I, 2017, ENVIRON RES, V158, P301, DOI 10.1016/j.envres.2017.06.028
  18. Michener G, 2018, REV ADM PUBL-RIO JAN, V52, P610
  19. Moran MR, 2020, CITIES, V105, DOI 10.1016/j.cities.2020.102817
  20. Orstad SL, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17134885
  21. Parra DC, 2010, HEALTH PLACE, V16, P1174, DOI 10.1016/j.healthplace.2010.07.008
  22. Rojas-Rueda D, 2019, LANCET PLANET HEALTH, V3, pE469, DOI 10.1016/S2542-5196(19)30215-3
  23. Sadeghian MM., 2015, INT J SCI TECHNOLOGY, P4
  24. Sakata FG., 2015, PERIODICO TECNICO CI, V3, P17, DOI [10.17271/23178604372015973, DOI 10.17271/23178604372015973]
  25. Sakata FG., 2019, PAISAGEM AMBIENTE, V30, pe155785, DOI [10.11606/issn.2359-5361.paam.2019.155785, DOI 10.11606/ISSN.2359-5361.PAAM.2019.155785]
  26. Sehra SS, 2014, 2014 11TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS (ITNG), P377, DOI 10.1109/ITNG.2014.115
  27. Seo S, 2019, ENVIRON INT, V125, P51, DOI 10.1016/j.envint.2019.01.038
  28. Shepley M, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16245119
  29. Sturm R, 2014, J MENT HEALTH POLICY, V17, P19
  30. SZEREMETA Bani, 2013, Raega-O Espaco Geografico em Analise, V29, P177, DOI [10.5380/raega.v29i0.30747, DOI 10.5380/RAEGA.V29I0.30747]
  31. Taylor L, 2017, LANDSCAPE URBAN PLAN, V158, P25, DOI 10.1016/j.landurbplan.2016.09.024
  32. WHO, 2016, Urban green spaces and health-a review of evidence
  33. Zhang GM, 2018, ANN GIS, V24, P151, DOI 10.1080/19475683.2018.1501607
  34. Zhang LM, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0212606