Neuroimmunology of rabies: New insights into an ancient disease

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
BASTOS, Victor
PACHECO, Vinicius
RODRIGUES, Erika D. L.
MORAES, Cassia N. S.
NOBILE, Adriel L.
FONSECA, Dennyson Leandro M.
SOUZA, Kamilla B. S.
VALE, Fernando Y. N. do
FILGUEIRAS, Igor S.
SCHIMKE, Lena F.
Citação
JOURNAL OF MEDICAL VIROLOGY, v.95, n.10, article ID e29042, 17p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.
Palavras-chave
neglected diseases, neuroimmunology, rabies
Referências
  1. Albertini AAV., 2011, Rabies Virus Transcription and Replication. Advances in Virus Research, V79
  2. Appolinário CM, 2016, AM J TROP MED HYG, V94, P378, DOI 10.4269/ajtmh.15-0361
  3. Bak LK, 2006, J NEUROCHEM, V98, P641, DOI 10.1111/j.1471-4159.2006.03913.x
  4. Baloul L, 2003, BIOCHIMIE, V85, P777, DOI 10.1016/S0300-9084(03)00137-8
  5. Banyard AC, 2018, REV SCI TECH OIE, V37, P323, DOI 10.20506/rst.37.2.2805
  6. Barger SW, 2007, J NEUROCHEM, V101, P1205, DOI 10.1111/j.1471-4159.2007.04487.x
  7. Bastos V., 2021, Sec. Planet Health, V9, P1
  8. Benarroch EE, 2019, NEUROLOGY, V92, P377, DOI 10.1212/WNL.0000000000006942
  9. Betlazar C, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9020512
  10. Bhandage AK, 2021, CELL MOL LIFE SCI, V78, P5667, DOI 10.1007/s00018-021-03881-z
  11. Bjornsen LP, 2014, J NEUROCHEM, V128, P641, DOI 10.1111/jnc.12509
  12. Blakely PK, 2009, J NEUROPATH EXP NEUR, V68, P1061, DOI 10.1097/NEN.0b013e3181b8ba14
  13. Boldyrev AA, 2005, J NEUROCHEM, V95, P913, DOI 10.1111/j.1471-4159.2005.03456.x
  14. BOUZAMONDO E, 1993, NEUROREPORT, V4, P555, DOI 10.1097/00001756-199305000-00023
  15. Bradley J, 2021, BMC VET RES, V17, DOI 10.1186/s12917-020-02728-2
  16. Bridges RJ, 2012, BRIT J PHARMACOL, V165, P20, DOI 10.1111/j.1476-5381.2011.01480.x
  17. Brzózka K, 2005, J VIROL, V79, P7673, DOI 10.1128/JVI.79.12.7673-7681.2005
  18. Cahalan MD, 2009, IMMUNOL REV, V231, P59, DOI 10.1111/j.1600-065X.2009.00816.x
  19. Cantile C., 2020, Jubb Kennedy Palmer's Pathol Domestic Anim, V1, P250
  20. Casseb LMN, 2015, Variantes Antigenicas, V2
  21. CECCALDI PE, 1993, EUR J PHARM-MOLEC PH, V245, P129, DOI 10.1016/0922-4106(93)90120-X
  22. Chai QQ, 2015, J VIROL, V89, P870, DOI 10.1128/JVI.02154-14
  23. Chen C., 2021, J Virol, V95, P1
  24. Chen J, 2004, NAT IMMUNOL, V5, P651, DOI 10.1038/ni1072
  25. Chen ZZ, 2019, J NEUROINFLAMM, V16, DOI 10.1186/s12974-019-1443-2
  26. Chiocchetti A, 2006, BRIT J PHARMACOL, V148, P760, DOI 10.1038/sj.bjp.0706746
  27. Cho J, 2009, J NEUROIMMUNOL, V207, P92, DOI 10.1016/j.jneuroim.2008.12.007
  28. Chopy D, 2011, J VIROL, V85, P6657, DOI 10.1128/JVI.00302-11
  29. Ciranna L, 2006, CURR NEUROPHARMACOL, V4, P101, DOI 10.2174/157015906776359540
  30. Clark EA, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02235
  31. Cochilla AJ, 1998, NEURON, V20, P1007, DOI 10.1016/S0896-6273(00)80481-X
  32. Cooper AJL, 2016, BIOMOLECULES, V6, DOI 10.3390/biom6020016
  33. Davis BM, 2015, ANNU REV VIROL, V2, P451, DOI 10.1146/annurev-virology-100114-055157
  34. de Carvalho MF, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006271
  35. Reis RAD, 2020, FRONT NEUROSCI-SWITZ, V14, DOI 10.3389/fnins.2020.569361
  36. Delpech JC, 2019, TRENDS NEUROSCI, V42, P361, DOI 10.1016/j.tins.2019.02.007
  37. Desai RV, 2002, AM J NEURORADIOL, V23, P632
  38. Dhingra V, 2007, J NEUROVIROL, V13, P107, DOI 10.1080/13550280601178226
  39. Di Castro MA, 2016, SCI REP-UK, V6, DOI 10.1038/srep34633
  40. Du Pont V, 2019, CURR OPIN VIROL, V35, P1, DOI 10.1016/j.coviro.2018.12.009
  41. Embregts CWE, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.622516
  42. Farahtaj F, 2013, MOL BIOL REP, V40, P6443, DOI 10.1007/s11033-013-2759-0
  43. Feige L, 2023, VIRUSES-BASEL, V15, DOI 10.3390/v15010088
  44. Feige L, 2021, VIRUSES-BASEL, V13, DOI 10.3390/v13122364
  45. Feige L, 2021, FRONT CELL INFECT MI, V11, DOI 10.3389/fcimb.2021.761074
  46. Fernandes ER, 2011, VIRUS RES, V156, P121, DOI 10.1016/j.virusres.2011.01.006
  47. Fernandes ER., 2009, O Processo Inflamatorio, A Resposta Imune "" in situ"" e a Morte Neuronal em Sistema Nervoso Central de Pacientes Com Raiva Transmitida por Morcegos
  48. Feske S, 2007, NAT REV IMMUNOL, V7, P690, DOI 10.1038/nri2152
  49. Feske S, 2015, ANNU REV IMMUNOL, V33, P291, DOI 10.1146/annurev-immunol-032414-112212
  50. Filgueira L, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10071836
  51. Flierl MA, 2008, MOL MED, V14, P195, DOI 10.2119/2007-00105.Flierl
  52. Fooks AR, 2017, NAT REV DIS PRIMERS, V3, DOI 10.1038/nrdp.2017.91
  53. Forrester JV, 2018, NAT REV NEUROSCI, V19, P655, DOI 10.1038/s41583-018-0070-8
  54. França TT, 2021, JCI INSIGHT, V6, DOI 10.1172/jci.insight.148652
  55. Freire PP, 2021, JCI INSIGHT, V6, DOI 10.1172/jci.insight.147535
  56. Fu ZF, 2005, J NEUROVIROL, V11, P101, DOI 10.1080/13550280590900445
  57. Fujii T, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01085
  58. Garcia SA, 2018, J NEUROVIROL, V24, P606, DOI 10.1007/s13365-018-0655-z
  59. Gnanadurai CW, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0004023
  60. Golan D. E., 2012, PRINCIPLES PHARM PAT
  61. Gonda X, 2012, CURR PHARM DESIGN, V18, P1558, DOI 10.2174/138161212799958521
  62. González H, 2015, J NEUROIMMUNE PHARM, V10, P561, DOI 10.1007/s11481-015-9618-9
  63. Granzotto A, 2022, CELLS-BASEL, V11, DOI 10.3390/cells11050911
  64. Gupta R, 2013, AMINO ACIDS, V44, P757, DOI 10.1007/s00726-012-1400-1
  65. Hampson K, 2015, PLOS NEGLECT TROP D, V9, DOI [10.1371/journal.pntd.0003786, 10.1371/journal.pntd.0003709]
  66. Hara MR, 2007, ANNU REV PHARMACOL, V47, P117, DOI 10.1146/annurev.pharmtox.47.120505.105311
  67. Health for Animals-Global Animal Health Association, Global Trends in the Pet Population
  68. Hemachudha P, 2021, J NEUROL SCI, V424, DOI 10.1016/j.jns.2021.117413
  69. HEMACHUDHA T, 1988, AM J MED, V84, P673, DOI 10.1016/0002-9343(88)90103-9
  70. Hemachudha T, 2013, LANCET NEUROL, V12, P498, DOI 10.1016/S1474-4422(13)70038-3
  71. Hernández-Vázquez F, 2019, REV NEUROSCIENCE, V30, P289, DOI 10.1515/revneuro-2018-0014
  72. Hertz L, 2017, FRONT INTEGR NEUROSC, V11, DOI 10.3389/fnint.2017.00018
  73. Howarth C, 2012, J CEREBR BLOOD F MET, V32, P1222, DOI 10.1038/jcbfm.2012.35
  74. Hu DL, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-66619-0
  75. Hueffer K, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12726-4
  76. Iwata M, 2016, BIOL PSYCHIAT, V80, P12, DOI 10.1016/j.biopsych.2015.11.026
  77. Jackson AC, 2016, J NEUROVIROL, V22, P8, DOI 10.1007/s13365-015-0351-1
  78. Jackson AC, 2011, RES REP TROP MED, V2, P31, DOI 10.2147/RRTM.S16013
  79. Jackson AC, 2008, J NEUROVIROL, V14, P368, DOI 10.1080/13550280802216502
  80. Jakob MO., 2020, Front Immunol, V11, P1
  81. Jha MK, 2016, BIOCHEM PHARMACOL, V103, P1, DOI 10.1016/j.bcp.2015.11.003
  82. Jhan MK, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00182-z
  83. Jin Z, 2013, AMINO ACIDS, V45, P87, DOI 10.1007/s00726-011-1193-7
  84. Jobin K, 2021, TRENDS IMMUNOL, V42, P469, DOI 10.1016/j.it.2021.04.002
  85. Johnson N, 2006, J MED MICROBIOL, V55, P785, DOI 10.1099/jmm.0.46370-0
  86. Kalamida D, 2007, FEBS J, V274, P3799, DOI 10.1111/j.1742-4658.2007.05935.x
  87. Karlstetter M, 2014, J NEUROINFLAMM, V11, DOI 10.1186/1742-2094-11-3
  88. Kim S., 2021, Front Microbiol, V12, P1
  89. Kimitsuki K, 2023, ANTIVIR RES, V209, DOI 10.1016/j.antiviral.2022.105489
  90. Kip E, 2017, CELL DEATH DISCOV, V3, DOI 10.1038/cddiscovery.2017.12
  91. Kostyuk PG, 2007, NEUROPHYSIOLOGY+, V39, P248, DOI 10.1007/s11062-007-0034-5
  92. Kuhn S, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8111424
  93. Kumar A, 2020, NEUROCHEM RES, V45, P2184, DOI 10.1007/s11064-020-03080-5
  94. LADOGANA A, 1994, J GEN VIROL, V75, P623, DOI 10.1099/0022-1317-75-3-623
  95. Lafon M, 2005, CURR TOP MICROBIOL, V289, P239
  96. Lafon M, 2005, J NEUROVIROL, V11, P82, DOI 10.1080/13550280590900427
  97. Lafon M., 2011, Evasive Strategies in Rabies Virus Infection, V79
  98. Lafon M, 2008, J IMMUNOL, V180, P7506, DOI 10.4049/jimmunol.180.11.7506
  99. Laothamatas J, 2003, AM J NEURORADIOL, V24, P1102
  100. Laothamatas J, 2008, J NEUROVIROL, V14, P119, DOI 10.1080/13550280701883857
  101. Lawrence TM, 2013, J VIROL, V87, P5848, DOI 10.1128/JVI.00203-13
  102. Leite JA, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-71027-5
  103. Lerma J, 2013, NEURON, V80, P292, DOI 10.1016/j.neuron.2013.09.045
  104. Li J., 2011, The Role of Toll-Like Receptors in the Induction of Immune Responses During Rabies Virus Infection. Advances in Virus Research, V79
  105. Lian MRN, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e10434
  106. Liu J, 2017, AUTOPHAGY, V13, P739, DOI 10.1080/15548627.2017.1280220
  107. Luca A, 2018, AGING DIS, V9, P1134, DOI 10.14336/AD.2018.0201
  108. Luo ZM, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.00169
  109. Mahmoud S, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8020184
  110. Malarkey EB, 2008, NEUROCHEM INT, V52, P142, DOI 10.1016/j.neuint.2007.06.005
  111. Mathews GC, 2003, J NEUROSCI, V23, P2040
  112. Mitrabhakdi E, 2005, J NEUROL SCI, V238, P3, DOI 10.1016/j.jns.2005.05.004
  113. Monroy-Gómez J, 2018, VIRUSES-BASEL, V10, DOI 10.3390/v10030112
  114. Morikawa N, 2018, BIOL PHARM BULL, V41, P1866, DOI 10.1248/bpb.b18-00055
  115. Nakamichi K, 2005, J VIROL, V79, P11801, DOI 10.1128/JVI.79.18.11801-11812.2005
  116. Nascimento José Luiz Martins do, 2013, Psychol. Neurosci., V6, P145, DOI 10.3922/j.psns.2013.2.03
  117. Negi N, 2018, INT REV IMMUNOL, V37, P57, DOI 10.1080/08830185.2017.1357719
  118. O'Brien KL, 2019, VACCINE, V37, pA85, DOI 10.1016/j.vaccine.2018.10.014
  119. Pacheco R, 2004, J BIOL CHEM, V279, P33352, DOI 10.1074/jbc.M401761200
  120. Pacheco R., 2012, Cells, Molecules and Mechanisms Involved in the Neuro-Immune Interaction: Cell Interaction
  121. Pacheco R, 2007, J NEUROIMMUNOL, V185, P9, DOI 10.1016/j.jneuroim.2007.01.003
  122. Pacheco R, 2006, J IMMUNOL, V177, P6695, DOI 10.4049/jimmunol.177.10.6695
  123. Paoletti P, 2013, NAT REV NEUROSCI, V14, P383, DOI 10.1038/nrn3504
  124. Peng JJ, 2016, AUTOPHAGY, V12, P1704, DOI 10.1080/15548627.2016.1196315
  125. Pivovarov AS, 2019, INVERTEBR NEUROSCI, V19, DOI 10.1007/s10158-018-0221-7
  126. Potratz M, 2020, ACTA NEUROPATHOL COM, V8, DOI 10.1186/s40478-020-01074-6
  127. Prado CAD, 2023, J MED VIROL, V95, DOI 10.1002/jmv.28450
  128. Préhaud C, 2005, J VIROL, V79, P12893, DOI 10.1128/JVI.79.20.12893-12904.2005
  129. Reinke SN, 2013, J INFECT DIS, V207, P1451, DOI 10.1093/infdis/jis479
  130. Rogawski MA, 2013, ACTA NEUROL SCAND, V127, P9, DOI 10.1111/ane.12099
  131. Rose CR, 2018, BRAIN RES BULL, V136, P3, DOI 10.1016/j.brainresbull.2016.12.013
  132. Rupprecht CE, 2019, EXPERT REV VACCINES, V18, P629, DOI 10.1080/14760584.2019.1627205
  133. Salgado RC, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-99838-0
  134. Katz ISS, 2017, ARCH VIROL, V162, P3251, DOI 10.1007/s00705-017-3484-0
  135. Santos LB, 2020, J NEUROIMMUNOL, V344, DOI 10.1016/j.jneuroim.2020.577263
  136. Sarawagi A, 2021, FRONT PSYCHIATRY, V12, DOI 10.3389/fpsyt.2021.637863
  137. Sasaki M, 2018, J INFECT DIS, V217, P1740, DOI 10.1093/infdis/jiy081
  138. Schimke LF, 2022, CELLS-BASEL, V11, DOI 10.3390/cells11050847
  139. Schousboe Arne, 2013, Front Endocrinol (Lausanne), V4, P102, DOI 10.3389/fendo.2013.00102
  140. Schutsky K, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087180
  141. Shankar SK, 2012, ANN INDIAN ACAD NEUR, V15, P221, DOI 10.4103/0972-2327.99728
  142. Shuai L, 2020, J VIROL, V94, DOI 10.1128/JVI.01819-19
  143. Shuangshoti S, 2013, BMC VET RES, V9, DOI 10.1186/1746-6148-9-31
  144. Shyer JA, 2020, CELL RES, V30, P649, DOI 10.1038/s41422-020-0379-5
  145. Singh R, 2017, VET QUART, V37, P212, DOI 10.1080/01652176.2017.1343516
  146. SMART NL, 1992, ACTA NEUROPATHOL, V84, P501, DOI 10.1007/BF00304469
  147. Soriano FX, 2007, J PHYSIOL-LONDON, V584, P381, DOI 10.1113/jphysiol.2007.138875
  148. Srinivasan A, 2005, NEW ENGL J MED, V352, P1103, DOI 10.1056/NEJMoa043018
  149. Stonedahl S, 2020, VACCINES-BASEL, V8, DOI 10.3390/vaccines8030485
  150. Strazielle N, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0150945
  151. Strehler EE, 2018, NEUROSCI LETT, V663, P39, DOI 10.1016/j.neulet.2017.08.035
  152. Sun JY, 2022, CNS NEUROSCI THER, V28, P1294, DOI 10.1111/cns.13893
  153. Tao R, 2000, J PSYCHOPHARMACOL, V14, P100, DOI 10.1177/026988110001400201
  154. Tarantola A, 2017, TROP MED INFECT DIS, V2, DOI 10.3390/tropicalmed2020005
  155. Tian B, 2018, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.02011
  156. Ugolini G, 2018, CURR OPIN INFECT DIS, V31, P93, DOI 10.1097/QCO.0000000000000420
  157. Venugopal AK, 2013, CLIN PROTEOM, V10, DOI 10.1186/1559-0275-10-3
  158. Virojanapirom P, 2016, J INFECT DIS, V214, P502, DOI 10.1093/infdis/jiw174
  159. Wang JL, 2021, CELL DISCOV, V7, DOI 10.1038/s41421-021-00357-z
  160. Wang JL, 2018, PLOS PATHOG, V14, DOI 10.1371/journal.ppat.1007189
  161. Weli SC, 2006, J VIROL, V80, P10270, DOI 10.1128/JVI.01272-06
  162. Wen Y, 2022, SIGNAL TRANSDUCT TAR, V7, DOI 10.1038/s41392-022-01148-y
  163. Wickersham IR, 2007, NEURON, V53, P639, DOI 10.1016/j.neuron.2007.01.033
  164. Wickersham IR, 2007, NAT METHODS, V4, P47, DOI 10.1038/NMETH999
  165. Willoughby RE, 2009, J INHERIT METAB DIS, V32, P65, DOI 10.1007/s10545-008-0949-z
  166. Willoughby RE, 2005, NEW ENGL J MED, V352, P2508, DOI 10.1056/NEJMoa050382
  167. WINKLER WG, 1972, AM J EPIDEMIOL, V95, P267, DOI 10.1093/oxfordjournals.aje.a121394
  168. Wood L, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122085
  169. World Organisation for Animal Health (OAH), Rabies
  170. Xie GQ, 2016, SCI REP-UK, V6, DOI 10.1038/srep23798
  171. Yamaoka S, 2013, J VIROL, V87, P12327, DOI 10.1128/JVI.02132-13
  172. Yang QQ, 2019, GLIA, V67, P1017, DOI 10.1002/glia.23571
  173. Yang Y, 2015, J VIROL, V89, P2157, DOI 10.1128/JVI.02092-14
  174. Ye L, 2013, J NEUROCHEM, V125, P897, DOI 10.1111/jnc.12263
  175. Yin JF, 2014, BIOMED ENVIRON SCI, V27, P749, DOI 10.3967/bes2014.034
  176. Yshii L, 2022, NAT IMMUNOL, V23, P878, DOI 10.1038/s41590-022-01208-z
  177. Zabegalov KN, 2021, BRAIN RES BULL, V166, P44, DOI 10.1016/j.brainresbull.2020.09.020
  178. Zeiler FA, 2016, CAN J NEUROL SCI, V43, P44, DOI 10.1017/cjn.2015.331
  179. Zhou Y, 2014, J NEURAL TRANSM, V121, P799, DOI 10.1007/s00702-014-1180-8
  180. Zhu J, 2018, HELIYON, V4, DOI 10.1016/j.heliyon.2018.e00976