Rare genetic variants involved in multisystem inflammatory syndrome in children: a multicenter Brazilian cohort study

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
REIS, Barbara Carvalho Santos Dos
FACCION, Roberta Soares
CARVALHO, Flavia Amendola Anisio de
MOORE, Daniella Campelo Batalha Cox
ZUMA, Maria Celia Chaves
PLACA, Desiree Rodrigues
FILGUEIRAS, Igor Salerno
FONSECA, Dennyson Leandro Mathias
BONOMO, Adriana Cesar
Citação
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, v.13, article ID 1182257, 16p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
IntroductionDespite the existing data on the Multisystem Inflammatory Syndrome in Children (MIS-C), the factors that determine these patients evolution remain elusive. Answers may lie, at least in part, in genetics. It is currently under investigation that MIS-C patients may have an underlying innate error of immunity (IEI), whether of monogenic, digenic, or even oligogenic origin. MethodsTo further investigate this hypothesis, 30 patients with MIS-C were submitted to whole exome sequencing. ResultsAnalyses of genes associated with MIS-C, MIS-A, severe covid-19, and Kawasaki disease identified twenty-nine patients with rare potentially damaging variants (50 variants were identified in 38 different genes), including those previously described in IFNA21 and IFIH1 genes, new variants in genes previously described in MIS-C patients (KMT2D, CFB, and PRF1), and variants in genes newly associated to MIS-C such as APOL1, TNFRSF13B, and G6PD. In addition, gene ontology enrichment pointed to the involvement of thirteen major pathways, including complement system, hematopoiesis, immune system development, and type II interferon signaling, that were not yet reported in MIS-C. DiscussionThese data strongly indicate that different gene families may favor MIS- C development. Larger cohort studies with healthy controls and other omics approaches, such as proteomics and RNAseq, will be precious to better understanding the disease dynamics.
Palavras-chave
multisystem inflammatory syndrome in children, pediatric inflammatory multisystem syndrome, coronavirus infection, mucocutaneous lymph node syndrome, Kawasaki disease, whole exome sequencing
Referências
  1. Abolhassani H, 2022, J ALLERGY CLIN IMMUN, V150, P1059, DOI 10.1016/j.jaci.2022.09.005
  2. Abolhassani H, 2022, J CLIN IMMUNOL, V42, P471, DOI 10.1007/s10875-022-01215-7
  3. Abuhammour W, 2022, JAMA NETW OPEN, V5, DOI 10.1001/jamanetworkopen.2022.14985
  4. Afzali B, 2022, NAT REV IMMUNOL, V22, P77, DOI 10.1038/s41577-021-00665-1
  5. Ali YM, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.714511
  6. [Anonymous], 2021, US
  7. Asano T, 2021, SCI IMMUNOL, V6, DOI 10.1126/sciimmunol.abl4348
  8. Bastard P, 2020, SCIENCE, V370, P423, DOI 10.1126/science.abd4585
  9. Belay ED, 2021, JAMA PEDIATR, V175, P837, DOI 10.1001/jamapediatrics.2021.0630
  10. Bergen AAB, 2000, NAT GENET, V25, P228, DOI 10.1038/76109
  11. Bousfiha A, 2020, J CLIN IMMUNOL, V40, P66, DOI 10.1007/s10875-020-00758-x
  12. Burgner D, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000319
  13. Cabrera-Marante O, 2020, HAEMATOLOGICA, V105, P2844, DOI 10.3324/haematol.2020.260307
  14. Cheng MH, 2020, P NATL ACAD SCI USA, V117, P25254, DOI 10.1073/pnas.2010722117
  15. Chou JE, 2021, J ALLERGY CLIN IMMUN, V148, P732, DOI 10.1016/j.jaci.2021.06.024
  16. Consiglio CR, 2020, CELL, V183, P968, DOI 10.1016/j.cell.2020.09.016
  17. Defendi F, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.742446
  18. Dufort EM, 2020, NEW ENGL J MED, V383, P347, DOI 10.1056/NEJMoa2021756
  19. Feldstein LR, 2020, NEW ENGL J MED, V383, P334, DOI 10.1056/NEJMoa2021680
  20. FUJITA Y, 1989, PEDIATRICS, V84, P666
  21. Garcia Maxime, 2020, F1000Res, V9, P63, DOI 10.12688/f1000research.16665.2
  22. Gavriilaki E, 2022, CURR ISSUES MOL BIOL, V44, P2811, DOI 10.3390/cimb44070193
  23. Gelzo M, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.985433
  24. Godfred-Cato S, 2020, MMWR-MORBID MORTAL W, V69, P1074, DOI 10.15585/mmwr.mm6932e2
  25. Gu ZG, 2014, BIOINFORMATICS, V30, P2811, DOI 10.1093/bioinformatics/btu393
  26. Harwood R, 2021, LANCET CHILD ADOLESC, V5, P133, DOI 10.1016/S2352-4642(20)30304-7
  27. House IG, 2015, IMMUNOL CELL BIOL, V93, P575, DOI 10.1038/icb.2015.1
  28. Kouo T, 2021, J CLIN INVEST, V131, DOI 10.1172/JCI149327
  29. Kumar D, 2022, J ALLERGY CLIN IMMUN, V149, P1592, DOI 10.1016/j.jaci.2022.02.028
  30. Lee D., 2023, NAT GENET, V379, DOI [10.1126/science.abo3627, DOI 10.1126/SCIENCE.ABO3627]
  31. Lee PY, 2020, J ALLERGY CLIN IMMUN, V146, P1194, DOI 10.1016/j.jaci.2020.07.033
  32. Lee YC, 2012, NAT GENET, V44, P522, DOI 10.1038/ng.2227
  33. Lim L, 2021, BMJ CASE REP, V14, DOI 10.1136/bcr-2021-246066
  34. Lima-Setta F, 2021, J PEDIAT-BRAZIL, V97, P354, DOI 10.1016/j.jped.2020.10.008
  35. Lin Y, 2018, INT J MOL MED, V41, P773, DOI 10.3892/ijmm.2017.3308
  36. Morita A, 2022, CLIN IMMUNOL, V236, DOI 10.1016/j.clim.2022.108955
  37. Onouchi Y, 2012, NAT GENET, V44, P517, DOI 10.1038/ng.2220
  38. Patel P, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2021.26456
  39. Porritt RA, 2021, J CLIN INVEST, V131, DOI 10.1172/JCI146614
  40. Ramaswamy A, 2021, IMMUNITY, V54, P1083, DOI 10.1016/j.immuni.2021.04.003
  41. Ratajczak MZ, 2021, STEM CELL REV REP, V17, P266, DOI 10.1007/s12015-020-10010-z
  42. Riphagen S, 2020, LANCET, V395, P1607, DOI [10.1016/S0140-6736(20)31094-1, 10.1016/50140-6736(20)31094-1]
  43. Ronit A, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.718744
  44. Sacco K, 2022, NAT MED, V28, P1050, DOI 10.1038/s41591-022-01724-3
  45. Sancho-Shimizu V, 2021, J EXP MED, V218, DOI 10.1084/jem.20210446
  46. Santos-Rebouças CB, 2022, MOL MED, V28, DOI 10.1186/s10020-022-00583-5
  47. Schulert GS, 2020, GENES IMMUN, V21, P169, DOI 10.1038/s41435-020-0098-4
  48. Shaiba LA, 2022, NEONATOLOGY, V119, P405, DOI 10.1159/000524202
  49. Solanich X, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.719115
  50. Syrimi E, 2021, ISCIENCE, V24, DOI 10.1016/j.isci.2021.103215
  51. Szklarczyk D, 2021, NUCLEIC ACIDS RES, V49, pD605, DOI 10.1093/nar/gkaa1074
  52. Tangye SG, 2021, J CLIN IMMUNOL, V41, P666, DOI 10.1007/s10875-021-00980-1
  53. Tovo PA, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22147481
  54. Trouillet-Assant S, 2020, J ALLERGY CLIN IMMUN, V146, P206, DOI 10.1016/j.jaci.2020.04.029
  55. Tsai FJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016853
  56. Uehara R, 2003, ACTA PAEDIATR, V92, P694, DOI 10.1080/08035320310002768
  57. Vagrecha A, 2022, BIOLOGY-BASEL, V11, DOI 10.3390/biology11030417
  58. Vagrecha A, 2021, PEDIATR BLOOD CANCER, V68, DOI 10.1002/pbc.28897
  59. van der Made CI, 2020, JAMA-J AM MED ASSOC, V324, P663, DOI 10.1001/jama.2020.13719
  60. Verdoni L, 2020, LANCET, V395, P1771, DOI 10.1016/S0140-6736(20)31103-X
  61. Voskoboinik I, 2007, BLOOD, V110, P1184, DOI 10.1182/blood-2007-02-072850
  62. Whittaker E, 2020, JAMA-J AM MED ASSOC, V324, P259, DOI 10.1001/jama.2020.10369
  63. Xie T, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-24194-6
  64. Zhang Q, 2020, SCIENCE, V370, DOI 10.1126/science.abd4570