Obstructive Sleep Apnea Is a Distinct Physiological Endotype in Individuals with Comorbid Insomnia and Sleep Apnea

Nenhuma Miniatura disponível
Citações na Scopus
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER THORACIC SOC
Autores
BROOKER, Elliot J.
LANDRY, Shane A.
THOMSON, Luke D. J.
HAMILTON, Garun S.
DRUMMOND, Sean P. A.
EDWARDS, Bradley A.
Citação
ANNALS OF THE AMERICAN THORACIC SOCIETY, v.20, n.10, p.1508-1515, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Rationale: With up to 40% of individuals with either insomnia or obstructive sleep apnea (OSA) demonstrating clinically significant symptoms of the other disorder, the high degree of comorbidity among the two most common sleep disorders suggests a bidirectional relationship and/or shared underpinnings. Although the presence of insomnia disorder is believed to influence the underlying pathophysiology of OSA, this influence is yet to be examined directly. Objectives: To investigate whether the four OSA endotypes (upper airway collapsibility, muscle compensation, loop gain, and the arousal threshold) are different in patients with OSA with and without comorbid insomnia disorder. Methods: Using the ventilatory flow pattern captured from routine polysomnography, the four OSA endotypes were measured in 34 patients with OSA who met the diagnostic criteria for insomnia disorder (COMISA) and 34 patients with OSA without insomnia (OSA only). Patients demonstrated mild-to-severe OSA (apnea-hypopnea index, 25.8 +/- 2.0 events/h) and were individually matched according to age (50.2 +/- 1.5 yr), sex (42 male: 26 female), and body mass index (29.3 +/- 0.6 kg/m(2)). Results: Compared with patients with OSA without comorbid insomnia, patients with COMISA demonstrated significantly lower respiratory arousal thresholds (128.9 [118.1 to 137.1] vs. 147.7 [132.3 to 165.0] % eupneic ventilation ((V) overbar(eupnea)); U= 261; 95% confidence interval [CI], 238.3 to 213.9; d= 1.1; P < 0.001), less collapsible upper airways (88.2 [85.5 to 94.6] vs. 72.9 [64.7 to 79.2] %(V) overbar(eupnea); U= 1081; 95% CI, 14.0 to 26.7; d= 2.3; P < 0.001), and more stable ventilatory control (i.e., lower loop gain: 0.51 [0.44 to 0.56] vs. 0.58 [0.49 to 0.70]; U= 402; 95% CI, 20.2 to 20.01; d= 0.05; P= 0.03). Muscle compensation was similar between groups. Moderated linear regression revealed that the arousal threshold moderated the relationship between collapsibility and OSA severity in patients with COMISA but not in patients with OSA only. Conclusions: A low arousal threshold is an overrepresented endotypic trait in individuals with COMISA and may exhibit a greater relative contribution to OSA pathogenesis in these patients. Contrastingly, the prevalence of a highly collapsible upper airway in COMISA was low, suggesting that anatomical predisposition may contribute less to OSA development in COMISA. Based on our findings, we theorize that conditioned hyperarousal perpetuating insomnia may translate to a reduced arousal threshold to respiratory events, thereby increasing the risk or severity of OSA. Therapies that target increased nocturnal hyperarousal (e.g., through cognitive behavior therapy for insomnia) may be effective in individuals with COMISA.
Palavras-chave
OSA, insomnia, pathophysiology, endotype traits
Referências
  1. American Psychiatric Association DSM-5 Task Force, 2013, Diagnostic and Statistical Manual of Mental Disorders, V5th
  2. Berry, 2014, AASM MANUAL SCORING
  3. Bianchi MT, 2013, J SLEEP RES, V22, P557, DOI 10.1111/jsr.12046
  4. Björnsdóttir E, 2012, J SLEEP RES, V21, P131, DOI 10.1111/j.1365-2869.2011.00972.x
  5. Bonnet MH, 2010, SLEEP MED REV, V14, P9, DOI 10.1016/j.smrv.2009.05.002
  6. Brooker E, 2022, Sleep Adv, V3, pA22, DOI [10.1093/sleepadvances/zpac029.052, DOI 10.1093/SLEEPADVANCES/ZPAC029.052]
  7. Cho YW, 2018, J CLIN SLEEP MED, V14, P409, DOI 10.5664/jcsm.6988
  8. Eckert DJ, 2014, J APPL PHYSIOL, V116, P302, DOI 10.1152/japplphysiol.00649.2013
  9. Eckert DJ, 2013, AM J RESP CRIT CARE, V188, P996, DOI 10.1164/rccm.201303-0448OC
  10. Eckert DJ, 2011, CLIN SCI, V120, P505, DOI 10.1042/CS20100588
  11. Edinger J., 2004, DUKE STRUCTURED INTE
  12. Edwards BA, 2019, AM J RESP CRIT CARE, V200, P691, DOI 10.1164/rccm.201901-0014TR
  13. Edwards BA, 2016, AM J RESP CRIT CARE, V194, P1413, DOI 10.1164/rccm.201601-0099OC
  14. Edwards BA, 2014, AM J RESP CRIT CARE, V190, P1293, DOI 10.1164/rccm.201404-0718OC
  15. El-Solh AA, 2021, SLEEP BREATH, V25, P597, DOI 10.1007/s11325-020-02106-0
  16. Fu YQ, 2017, SLEEP BREATH, V21, P181, DOI 10.1007/s11325-016-1393-1
  17. Genta PR, 2020, J CLIN SLEEP MED, V16, P1531, DOI 10.5664/jcsm.8600
  18. GLEADHILL IC, 1991, AM REV RESPIR DIS, V143, P1300, DOI 10.1164/ajrccm/143.6.1300
  19. Jean-Louis G, 2008, J CLIN SLEEP MED, V4, P261
  20. Joosten SA, 2017, SLEEP, V40, DOI 10.1093/sleep/zsx094
  21. Jordan AS, 2014, LANCET, V383, P736, DOI 10.1016/S0140-6736(13)60734-5
  22. Krakow B, 2001, CHEST, V120, P1923, DOI 10.1378/chest.120.6.1923
  23. Lang CJ, 2017, RESPIROLOGY, V22, P1407, DOI 10.1111/resp.13064
  24. Mellor A, 2019, TRIALS, V20, DOI 10.1186/s13063-019-3334-3
  25. Messineo L, 2020, J PHYSIOL-LONDON, V598, P4681, DOI 10.1113/JP280173
  26. O'Driscoll DM, 2019, SLEEP, V42, DOI 10.1093/sleep/zsz186
  27. Pieh C, 2013, SLEEP BREATH, V17, P99, DOI 10.1007/s11325-012-0655-9
  28. Riemann D, 2017, J SLEEP RES, V26, P675, DOI 10.1111/jsr.12594
  29. Sands SA, 2018, EUR RESPIR J, V52, DOI 10.1183/13993003.00674-2018
  30. Sands SA, 2018, AM J RESP CRIT CARE, V197, P1187, DOI 10.1164/rccm.201707-1435OC
  31. Sands SA, 2018, SLEEP, V41, DOI 10.1093/sleep/zsx183
  32. Schmick CN, 2020, AM J RESP CRIT CARE, V201
  33. Sweetman A, 2021, SLEEP MED REV, V60, DOI 10.1016/j.smrv.2021.101519
  34. Sweetman A, 2021, SLEEP MED, V82, P9, DOI 10.1016/j.sleep.2021.03.023
  35. Sweetman A, 2020, ERJ OPEN RES, V6, DOI 10.1183/23120541.00161-2020
  36. Sweetman A, 2019, BRAIN SCI, V9, DOI 10.3390/brainsci9120371
  37. Sweetman AM, 2017, SLEEP MED REV, V33, P28, DOI 10.1016/j.smrv.2016.04.004
  38. Terrill PI, 2015, EUR RESPIR J, V45, P408, DOI 10.1183/09031936.00062914
  39. Yanagimori M, 2022, AM J RESP CRIT CARE, V205
  40. Zinchuk A, 2018, J CLIN SLEEP MED, V14, P809, DOI 10.5664/jcsm.7112