Life Cycle Assessment Applied to End-of-Life Scenarios of Sargassum spp. for Application in Civil Construction

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
BUENO, Cristiane
ROSSIGNOLO, Joao Adriano
GAVIOLI, Leticia Missiatto
SPOSITO, Camila Cassola Assuncao
TONIN, Fernando Gustavo
MORAES, Maria Julia Bassan de
LYRA, Gabriela Pitolli
Citação
SUSTAINABILITY, v.15, n.7, article ID 6254, 23p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Environmental risks and vulnerabilities in coastal regions include the massive deposits of brown algae of the genus Sargassum in regions such as the Caribbean, Gulf of Mexico, and northern Brazil. Efforts have been made to turn this problem into an opportunity by seeking new uses for this biomass in the sectors of food, agriculture, health, biofuels, bioremediation, and civil construction. Thus, this study aimed to produce quantitative data for different end-of-life scenarios of the Sargassum algae, seeking for potential applications of this macroalgae in the civil construction sector. For this purpose, we conducted a life cycle assessment (LCA) study of the Sargassum algae, in its natural destination, and evaluated its potential impact. This evaluation was then compared to the possible impacts of alternatives to their end of life, such as landfill disposal, drying and grinding to use as fibers or particles, burning the biomass to generate energy and fly ash, using a consequential LCA and the indicators of the ReCiPe 2016 method. For each of the proposed scenarios, the functional unit of 1 kg of the three types of unprocessed Sargassum algae that are found in the Brazilian deposits (natans I, natans VIII, and fluitans) was considered separately, and also for a composition that is closer to that found in the Brazilian deposits (50% fluitans, 15% natans I, and 35% natans VIII). The results for both natural decomposition scenarios demonstrated a dominant contribution to the categories of impact for climate change, marine eutrophication, and land use, thus justifying the search for new initiatives for the use of the algae. The burning process showed a significant contribution to most of the indicators, with emphasis on the massive generation of particulate, inherent to the biomass burning process; however, it showed a reduction in the magnitude of climate change emissions from around 47% to less than 2%. Finally, the proposed scenario of processing Sargassum biomass to obtain particles presented prevalence of magnitude for potential impact in most of the proposed indicators, due to the processes with high electricity consumption, but keeping climate change emissions' relative reduction from 47% to 6%. Thus, new studies may further investigate the potential of application of these materials in different products and components of civil construction.
Palavras-chave
life cycle assessment (LCA), Sargassum, Sargassum life cycle, biomass life cycle, Sargassum end of life
Referências
  1. Abdullah MA, 2016, BIOTECHNOL BIOPROC E, V21, P236, DOI 10.1007/s12257-015-0388-2
  2. Achinas Spyridon, 2016, Resource-Efficient Technologies, V2, P143, DOI 10.1016/j.reffit.2016.08.001
  3. Allen E, 2015, ENERGY, V81, P352, DOI 10.1016/j.energy.2014.12.048
  4. Amador-Castro F, 2021, J ENVIRON MANAGE, V283, DOI 10.1016/j.jenvman.2021.112013
  5. Arabadzhyan A, 2021, CURR ISSUES TOUR, V24, P2233, DOI 10.1080/13683500.2020.1825351
  6. Backa Alexander, 2020, MATEC Web of Conferences, V328, DOI 10.1051/matecconf/202032804003
  7. Lopez-Sosa LB, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10238706
  8. BIRD K T, 1990, Journal of Applied Phycology, V2, P207, DOI 10.1007/BF02179777
  9. Bowman C.T., 1992, 24 S INT COMB COMB I, V24, P859, DOI 10.1016/S0082-0784(06)80104-9
  10. Boyle W. C., 1977, Microbial Energy Conversion (Schlegel, H.G.
  11. Barnea, J. Editors). Proceedings of a Seminar sponsored by the UN Institute for Training and Research (UNITAR) and the Ministry for Research and Technology of the Federal Republic of Germany, Gottingen, 1976., P119
  12. Channiwala SA, 2002, FUEL, V81, P1051, DOI 10.1016/S0016-2361(01)00131-4
  13. de Siqueira AA, 2022, CONSTR BUILD MATER, V317, DOI 10.1016/j.conbuildmat.2021.126150
  14. Coracao ACD, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.103941
  15. de Souza LL, 2021, ENERGY REP, V7, P2574, DOI 10.1016/j.egyr.2021.04.026
  16. Desrochers A., 2020, SARGASSUM USES GUIDE
  17. Driemeier CE, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0208219
  18. EPE (Empresa de Pesquisa Energetica), 2021, BRAZILIAN ENERGY BAL
  19. Haines A, 2006, PUBLIC HEALTH, V120, P585, DOI 10.1016/j.puhe.2006.01.002
  20. HAYHURST AN, 1980, PROG ENERG COMBUST, V6, P35, DOI 10.1016/0360-1285(80)90014-3
  21. Horvat I, 2021, ENERGY, V231, DOI 10.1016/j.energy.2021.120929
  22. Kalia VC, 2016, INDIAN J MICROBIOL, V56, P113, DOI 10.1007/s12088-016-0583-7
  23. Khawaja SA, 2021, CLEAN ENG TECHNOL, V4, DOI 10.1016/j.clet.2021.100164
  24. Kravetz C., 2018, ESTUDO DESEMPENHO EN
  25. Silva DAL, 2014, INT J LIFE CYCLE ASS, V19, P1767, DOI 10.1007/s11367-014-0776-4
  26. Martinelli Filho J.E., 2016, P 68 ANN GULF CAR FI, P14
  27. Martins C.A., 2010, P 6 NAT C MECH ENG C, P18
  28. Medina P, 2021, ENERGY SUSTAIN DEV, V63, P153, DOI 10.1016/j.esd.2021.07.001
  29. Mendes R.F., 2014, KEY ENG MAT, V634, P163, DOI [10.4028/www.scientific.net/KEM.634.163, DOI 10.4028/WWW.SCIENTIFIC.NET/KEM.634.163]
  30. Milledge JJ, 2016, J MAR SCI ENG, V4, DOI 10.3390/jmse4030060
  31. Milledge JJ, 2020, ENERGIES, V13, DOI 10.3390/en13061523
  32. Mousavi SM, 2021, FUEL, V293, DOI 10.1016/j.fuel.2021.120154
  33. Barbosa LDNS, 2017, BIOMASS BIOENERG, V105, P351, DOI 10.1016/j.biombioe.2017.07.015
  34. Oviatt CA, 2019, MAR POLLUT BULL, V145, P517, DOI 10.1016/j.marpolbul.2019.06.049
  35. Patz JA, 2014, JAMA-J AM MED ASSOC, V312, P1565, DOI 10.1001/jama.2014.13186
  36. Puspita M, 2020, ADV BOT RES, V95, P113, DOI 10.1016/bs.abr.2019.12.002
  37. Resiere D, 2021, CLIN TOXICOL, V59, P215, DOI 10.1080/15563650.2020.1789162
  38. Resiere D, 2019, REV PANAM SALUD PUBL, V43, DOI 10.26633/RPSP.2019.52
  39. Rossignolo JA, 2022, J ENVIRON MANAGE, V303, DOI 10.1016/j.jenvman.2021.114258
  40. Silva Marcio Rogerio, 2018, Mat. Res., V21, pe20170724, DOI 10.1590/1980-5373-mr-2017-0724
  41. Sissini MN, 2017, PHYCOLOGIA, V56, P321, DOI 10.2216/16-92.1
  42. Solomon S., 2007, CLIMATE CHANGE 2007, DOI 10.1017/CBO9781139177245
  43. Sposito CCA, 2023, J CLEAN PROD, V385, DOI 10.1016/j.jclepro.2022.135667
  44. Symons GE, 1933, J AM CHEM SOC, V55, P2028, DOI 10.1021/ja01332a039
  45. Thompson TM, 2020, FUEL, V279, DOI 10.1016/j.fuel.2020.118527
  46. Trainer VL, 2020, HARMFUL ALGAE, V91, DOI 10.1016/j.hal.2019.03.009
  47. Wang S, 2018, COMBUST SCI TECHNOL, V190, P755, DOI 10.1080/00102202.2017.1407761