Immune Evasion of SARS-CoV-2 Omicron Subvariants XBB.1.5, XBB.1.16 and EG.5.1 in a Cohort of Older Adults after ChAdOx1-S Vaccination and BA.4/5 Bivalent Booster

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
MACHADO, Rafael Rahal Guaragna
CANDIDO, erika Donizetti
AGUIAR, Andressa Simoes
CHALUP, Vanessa Nascimento
SANCHES, Patricia Romao
DORLASS, Erick Gustavo
AMGARTEN, Deyvid Emanuel
DURIGON, Edison Luiz
OLIVEIRA, Danielle Bruna Leal
Citação
VACCINES, v.12, n.2, article ID 144, 13p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The recently emerged SARS-CoV-2 Omicron sublineages, including the BA.2-derived XBB.1.5 (Kraken), XBB.1.16 (Arcturus), and EG.5.1 (Eris), have accumulated several spike mutations that may increase immune escape, affecting vaccine effectiveness. Older adults are an understudied group at significantly increased risk of severe COVID-19. Here we report the neutralizing activities of 177 sera samples from 59 older adults, aged 62-97 years, 1 and 4 months after vaccination with a 4th dose of ChAdOx1-S (Oxford/AstraZeneca) and 3 months after a 5th dose of Comirnaty Bivalent Original/Omicron BA.4/BA.5 vaccine (Pfizer-BioNTech). The ChAdOx1-S vaccination-induced antibodies neutralized efficiently the ancestral D614G and BA.4/5 variants, but to a much lesser extent the XBB.1.5, XBB.1.16, and EG.5.1 variants. The results showed similar neutralization titers between XBB.1.16 and EG.5.1 and were lower compared to XBB.1.5. Sera from the same individuals boosted with the bivalent mRNA vaccine contained higher neutralizing antibody titers, providing a better cross-protection against Omicron XBB.1.5, XBB.1.16 and EG.5.1 variants. Previous history of infection during the epidemiological waves of BA.1/BA.2 and BA.4/BA.5, poorly enhanced neutralization activity of serum samples against XBBs and EG.5.1 variants. Our data highlight the continued immune evasion of recent Omicron subvariants and support the booster administration of BA.4/5 bivalent vaccine, as a continuous strategy of updating future vaccine booster doses to match newly emerged SARS-CoV-2 variants.
Palavras-chave
SARS-CoV-2, Omicron sublineages, XBB.1.5, XBB.1.16, EG.5.1, ChAdOx1-S, Bivalent BA.4/BA.5 mRNA vaccine, neutralizing antibodies, immune escape, older adults
Referências
  1. Alcantara LCJ, 2022, VIRUS RES, V315, DOI 10.1016/j.virusres.2022.198785
  2. Araujo DB, 2020, MEM I OSWALDO CRUZ, V115, DOI 10.1590/0074-02760200342
  3. CDC, 2023, COVID Data Tracker-Variant Proportions
  4. Collier DA, 2021, NATURE, V596, P417, DOI 10.1038/s41586-021-03739-1
  5. Dyer O, 2023, BMJ-BRIT MED J, V382, DOI 10.1136/bmj.p1900
  6. Faraone JN, 2023, EMERG MICROBES INFEC, V12, DOI 10.1080/22221751.2023.2270069
  7. Faraone JN, 2023, CELL REP, V42, DOI 10.1016/j.celrep.2023.113193
  8. Gangavarapu K, 2023, NAT METHODS, V20, DOI 10.1038/s41592-023-01769-3
  9. Gudbjartsson DF, 2020, NEW ENGL J MED, V383, P1724, DOI 10.1056/NEJMoa2026116
  10. Hitchings MDT, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-26459-6
  11. Hojo-Souza NS, 2023, VIRUSES-BASEL, V15, DOI 10.3390/v15101997
  12. Hu YP, 2023, EMERG MICROBES INFEC, V12, DOI 10.1080/22221751.2023.2271089
  13. Jeong HW, 2022, CELL REP MED, V3, DOI 10.1016/j.xcrm.2022.100764
  14. Karber G, 1931, N-S ARCH EX PATH PH, V162, P480, DOI 10.1007/BF01863914
  15. Kawasuji H, 2021, MICROBIOL SPECTR, V9, DOI 10.1128/Spectrum.00561-21
  16. Khare S, 2021, CHINA CDC WEEKLY, V3, P1049, DOI 10.46234/ccdcw2021.255
  17. Kurhade C, 2023, NAT MED, V29, DOI 10.1038/s41591-022-02162-x
  18. Lasrado Ninaad, 2023, bioRxiv, DOI 10.1101/2023.01.22.525079
  19. Lin DY, 2023, NEW ENGL J MED, V388, P764, DOI 10.1056/NEJMc2215471
  20. Lyngse FP, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-33498-0
  21. Moss P, 2022, NAT IMMUNOL, V23, P186, DOI 10.1038/s41590-021-01122-w
  22. Qu PK, 2023, CELL HOST MICROBE, V31, P9, DOI 10.1016/j.chom.2022.11.012
  23. Ramasamy MN, 2020, LANCET, V396, P1979, DOI 10.1016/S0140-6736(20)32466-1
  24. Slavov SN, 2020, J INFECTION, V80, P111, DOI 10.1016/j.jinf.2019.10.002
  25. Spearman C, 1908, BRIT J PSYCHOL, V2, P227, DOI 10.1111/j.2044-8295.1908.tb00176.x
  26. Tamura T., 2023, Microbiology, DOI [10.1101/2023.08.16.553332, DOI 10.1101/2023.08.16.553332]
  27. Tegally H, 2022, NAT MED, V28, P1785, DOI 10.1038/s41591-022-01911-2
  28. Wang Q, 2023, NEW ENGL J MED, V388, P567, DOI 10.1056/NEJMc2213907
  29. Wang Q, 2023, CELL, V186, P279, DOI 10.1016/j.cell.2022.12.018
  30. Wendel S, 2021, TRANSFUSION, V61, P1447, DOI 10.1111/trf.16323
  31. Wendel S, 2020, TRANSFUSION, V60, P2938, DOI 10.1111/trf.16065
  32. Wong-Lee Jolene G., 1993, P257
  33. Xia HJ, 2022, CELL HOST MICROBE, V30, P485, DOI 10.1016/j.chom.2022.02.015
  34. Xia S, 2023, J MED VIROL, V95, DOI 10.1002/jmv.28641
  35. Yamasoba D, 2023, LANCET INFECT DIS, V23, P655, DOI 10.1016/S1473-3099(23)00278-5
  36. Yanez ND, 2020, BMC PUBLIC HEALTH, V20, DOI 10.1186/s12889-020-09826-8
  37. Yang JY, 2023, SIGNAL TRANSDUCT TAR, V8, DOI 10.1038/s41392-023-01495-4
  38. Zou J, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28544-w