Neurovascular and hemodynamic responses to mental stress and exercise in severe COVID-19 survivors

Nenhuma Miniatura disponível
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PHYSIOLOGICAL SOC
Autores
FARIA, Diego
MOLL-BERNARDES, Renata
TESTA, Laura
MONIZ, Camila M. V.
RODRIGUES, Erika C.
MOTA, Jose M.
ONO, Bruna E.
IZAIAS, Joao E.
Citação
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY, INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, v.325, n.3, p.R269-R279, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Previous studies show that COVID-19 survivors have elevated muscle sympathetic nerve activity (MSNA), endothelial dysfunction, and aortic stiffening. However, the neurovascular responses to mental stress and exercise are still unexplored. We hypothesized that COVID-19 survivors, compared with age-and body mass index (BMI)-matched control subjects, exhibit abnormal neurovascular responses to mental stress and physical exercise. Fifteen severe COVID-19 survivors (aged: 49 +/- 2 yr, BMI: 30 +/- 1 kg/m(2)) and 15 well-matched control subjects (aged: 46 +/- 3 yr, BMI: 29 +/- 1 kg/m(2)) were studied. MSNA (microneurography), forearm blood flow (FBF), and forearm vascular conductance (FVC, venous occlusion plethysmography), mean arterial pressure (MAP, Finometer), and heart rate (HR, ECG) were measured during a 3-min mental stress (Stroop Color-Word Test) and during a 3-min isometric handgrip exercise (30% of maximal voluntary contraction). During mental stress, MSNA (frequency and incidence) responses were higher in COVID-19 survivors than in controls (P < 0.001), and FBF and FVC responses were attenuated (P < 0.05). MAP was similar between the groups (P > 0.05). In contrast, the MSNA (frequency and incidence) and FBF and FVC responses to handgrip exercise were similar between the groups (P > 0.05). MAP was lower in COVID-19 survivors (P < 0.05). COVID-19 survivors exhibit an exaggerated MSNA and blunted vasodilatory response to mental challenge compared with healthy adults. However, the neurovascular response to handgrip exercise is preserved in COVID-19 survivors. Overall, the abnormal neurovascular control in response to mental stress suggests that COVID-19 survivors may have an increased risk to cardiovascular events during mental challenge.
Palavras-chave
exercise, mental stress, peripheral blood flow, sympathetic activity, vascular conductance
Referências
  1. Agrawal S, 2022, ACTA NEUROPATHOL COM, V10, DOI 10.1186/s40478-022-01493-7
  2. Baratto C, 2021, J APPL PHYSIOL, V130, P1470, DOI 10.1152/japplphysiol.00710.2020
  3. Bogert LWJ, 2005, EXP PHYSIOL, V90, P437, DOI 10.1113/expphysiol.2005.030262
  4. Bowe B, 2022, NAT MED, V28, P2398, DOI 10.1038/s41591-022-02051-3
  5. Cardillo C, 1997, AM J CARDIOL, V80, P1070, DOI 10.1016/S0002-9149(97)00605-X
  6. Carter JR, 2015, COMPR PHYSIOL, V5, P119, DOI 10.1002/cphy.c140030
  7. Carter JR, 2009, AM J PHYSIOL-HEART C, V296, pH847, DOI 10.1152/ajpheart.01234.2008
  8. Carter JR, 2005, J PHYSIOL-LONDON, V564, P321, DOI 10.1113/jphysiol.2004.079665
  9. Chida Y, 2010, HYPERTENSION, V55, P1026, DOI 10.1161/HYPERTENSIONAHA.109.146621
  10. Esler M, 2003, ACTA PHYSIOL SCAND, V177, P275, DOI 10.1046/j.1365-201X.2003.01089.x
  11. Esler M, 2008, ANN NY ACAD SCI, V1148, P338, DOI 10.1196/annals.1410.064
  12. Faria D, 2023, HYPERTENSION, V80, P470, DOI 10.1161/HYPERTENSIONAHA.122.19958
  13. Fonkoue IT, 2016, AM J PHYSIOL-HEART C, V311, pH426, DOI 10.1152/ajpheart.00378.2016
  14. Fonkoue IT, 2015, AM J PHYSIOL-REG I, V309, pR1380, DOI 10.1152/ajpregu.00344.2015
  15. HAJDUCZOK G, 1991, CIRC RES, V69, P66, DOI 10.1161/01.RES.69.1.66
  16. Halliwill JR, 1997, J PHYSIOL-LONDON, V504, P211, DOI 10.1111/j.1469-7793.1997.211bf.x
  17. Lambert G, 2010, HYPERTENSION, V55, pE20, DOI 10.1161/HYPERTENSIONAHA.110.153841
  18. Macefield VG, 2013, INT J PSYCHOPHYSIOL, V89, P451, DOI 10.1016/j.ijpsycho.2013.06.002
  19. Middlekauff HR, 1997, CIRCULATION, V96, P1835, DOI 10.1161/01.CIR.96.6.1835
  20. Padilla J, 2011, PHYSIOLOGY, V26, P132, DOI 10.1152/physiol.00052.2010
  21. Ratchford SM, 2021, AM J PHYSIOL-HEART C, V320, pH404, DOI 10.1152/ajpheart.00897.2020
  22. Sales ARK, 2014, AM J PHYSIOL-HEART C, V306, pH963, DOI 10.1152/ajpheart.00811.2013
  23. Sales ARK, Am J Physiol Heart Circ Physiol
  24. Santos AC, 2005, AM J PHYSIOL-HEART C, V289, pH593, DOI 10.1152/ajpheart.01240.2004
  25. Sarkar S, 2023, MEDCOMM, V4, DOI 10.1002/mco2.247
  26. Satterfield BA, 2022, NAT REV CARDIOL, V19, P332, DOI 10.1038/s41569-021-00631-3
  27. Smith SA, 2006, EXP PHYSIOL, V91, P89, DOI 10.1113/expphysiol.2005.032367
  28. Stute NL, 2021, J PHYSIOL-LONDON, V599, P4269, DOI 10.1113/JP281888
  29. Szekely Y, 2021, J AM SOC ECHOCARDIOG, V34, P1273, DOI 10.1016/j.echo.2021.08.022
  30. Teixeira AL, 2022, CLIN AUTON RES, V32, P271, DOI 10.1007/s10286-022-00872-3
  31. Thomas GD, 2015, AUTON NEUROSCI-BASIC, V188, P64, DOI 10.1016/j.autneu.2014.10.019
  32. VICTOR RG, 1987, J CLIN INVEST, V79, P508, DOI 10.1172/JCI112841
  33. Wang WJ, 2022, ECLINICALMEDICINE, V53, DOI 10.1016/j.eclinm.2022.101619
  34. Xie Y, 2023, JAMA-J AM MED ASSOC, V329, P1697, DOI 10.1001/jama.2023.5348
  35. Xie Y, 2022, NAT MED, V28, P583, DOI 10.1038/s41591-022-01689-3
  36. Yang H, 2013, AM J PHYSIOL-HEART C, V304, pH436, DOI 10.1152/ajpheart.00688.2012