The role of AGEs in the pathogenesis of macrovascular complications in diabetes mellitus

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
bookPart
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
CRC PRESS
Citação
Passarelli, M.. The role of AGEs in the pathogenesis of macrovascular complications in diabetes mellitus. In: . DIETARY AGES AND THEIR ROLE IN HEALTH AND DISEASE: CRC PRESS, 2017. p.283-291.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
AGEs are increased in diabetes mellitus and are related to the development of micro- and macrovascular complications in this condition. © 2018 by Taylor & Francis Group, LLC.
Palavras-chave
Referências
  1. Baidoshvili, A., Niessen, H.W., Stooker, W., Huybregts, R.A., Hack, C.E., Rauwerda, J.A., Meijer, C.J., N(omega)-(carboxymethyl)lysine depositions in human aortic heart valves: Similarities with atherosclerotic blood vessels (2004) Atherosclerosis., 174, pp. 287-292
  2. Brownlee, M., Biochemistry and molecular cell biology of diabetic complications (2001) Nature, 414, pp. 813-820
  3. Bu, D.X., Rai, V., Shen, X., Rosario, R., Lu, Y., D‘Agati, V., Yan, S.F., Activation of the ROCK1 branch of the transforming growth factor-beta pathway contributes to RAGE-dependent acceleration of atherosclerosis in diabetic apoE-null mice (2010) Circ Res, 106, pp. 1040-1051
  4. Castilho, G., Okuda, L.S., Pinto, R.S., Iborra, R.T., Nakandakare, E.R., Santos, C.X., Laurindo, F.R., ER stress is associated with reduced ABCA-1 protein levels in macrophages treated with advanced glycated albumin-Reversal by a chemical chaperone (2012) Int J Biochem Cell Biol., 44, pp. 1078-1086
  5. Coughlan, M.T., Yap, F.Y., Tong, D.C., Andrikopoulos, S., Gasser, A., Thallas-Bonke, V., Webster, D.E., Advanced glycation end products are direct modulators of β-cell function (2011) Diabetes, 60, pp. 2523-2532
  6. Daffu, G., Shen, X., Senatus, L., Thiagarajan, D., Abedini, A., Hurtado Del Pozo, C., Rosario, R., RAGE suppresses ABCG1-Mediated macrophage cholesterol efflux in diabetes (2015) Diabetes, 64, pp. 4046-4060
  7. de Boer, J.F., Annema, W., Schreurs, M., van der Veen, J.N., van der Giet, M., Nijstad, N., Kuipers, F., Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice (2012) J Lipid Res., 53, pp. 348-357
  8. de Souza Pinto, R., Castilho, G., Paim, B.A., Machado-Lima, A., Inada, N.M., Nakandakare, E.R., Vercesi, A.E., Inhibition of macrophage oxidative stress prevents the reduction of ABCA-1 transporter induced by advanced glycated albumin (2012) Lipids, 47, pp. 443-450. , Inhibition of macrophage oxidative stress prevents the reduction of ABCA-1 transporter induced by advanced glycated albumin
  9. Dozio, E., Di Gaetano, N., Findeisen, P., Corsi Romanelli, M.M., Glycated albumIn: From biochemistry and laboratory medicine to clinical practice (2017) Endocrine, 55, pp. 682-690
  10. Filippatos, T., Tsimihodimos, V., Pappa, E., Elisaf, M., Pathophysiology of diabetic dyslipidaemia (2017) Curr Vasc Pharmacol., p. 31
  11. Fokkens, B.T., Smit, A.J., Skin fluorescence as a clinical tool for non-invasive assessment of advanced glycation and long-term complications of diabetes (2016) Glycoconj J., 33, pp. 527-535
  12. Genuth, S., Sun, W., Cleary, P., Gao, X., Sell, D.R., Lachin, J., Monnier, V.M., Skin advanced glycation end products glucosepane and methylglyoxal hydroimidazolone are independently associated with long-term microvascular complication progression of type 1 diabetes (2015) Diabetes, 64, pp. 266-278
  13. Gomes, D.J., Velosa, A.P., Okuda, L.S., Fusco, F.B., da Silva, K.S., Pinto, P.R., Nakandakare, E.R., Glycated albumin induces lipid infiltration in mice aorta independently of DM and RAS local modulation by inducing lipid peroxidation and inflammation (2016) J Diabetes Complications, 30, pp. 1614-1621
  14. Henning, C., Glomb, M.A., Pathways of the Maillard reaction under physiological conditions (2016) Glycoconj J., 33, pp. 499-512
  15. Horiuchi, S., Sakamoto, Y., Sakai, M., Scavenger receptors for oxidized and glycated proteins (2003) Amino Acids, 25, pp. 283-292
  16. Iborra, R.T., Advanced glycation in macrophages induces intracellular accumulation of 7-ketocholesterol and total sterols by decreasing the expression of ABCA-1 and ABCG-1 (2011) Lipids Health Dis., 10, p. 172
  17. Iborra, R.T., Machado-Lima, A., Castilho, G., Nunes, V.S., Abdalla, D.S., Nakandakare, E.R., Passarelli, M., Selective inhibition of proteasomal and lysosomal degradation pathways partially prevent abca-1 reduction in macrophages induced by advanced glycated albumin (2014) Atherosclerosis, 235 (2), pp. e97-e98
  18. Ishibashi, Y., Matsui, T., Takeuchi, M., Yamagishi, S., Rosuvastatin blocks advanced glycation end productselicited reduction of macrophage cholesterol efflux by suppressing NADPH oxidase activity via inhibition of geranylgeranylation of Rac-1 (2011) Horm Metab Res., 43, pp. 619-624
  19. Kajikawa, M., Nakashima, A., Fujimura, N., Maruhashi, T., Iwamoto, Y., Iwamoto, A., Matsumoto, T., Ratio of serum levels of AGEs to soluble form of RAGE is a predictor of endotelial function (2015) Diabetes Care, 38, pp. 119-125
  20. Kiuchi, K., Nejima, J., Takano, T., Ohta, M., Hashimoto, H., Increased serum concentrations of advanced glycation end products: A marker of coronary artery disease activity in type 2 diabetic patients (2001) Heart., 85, pp. 87-91
  21. Low, H., Hoang, A., Forbes, J., Thomas, M., Lyons, J.G., Nestel, P., Bach, L.A., Advanced glycation endproducts (AGEs) and functionality of reverse cholesterol transport in patients with type 2 diabetes and in mouse models (2012) Diabetologia, 55, pp. 2513-2521
  22. Machado, A.P., Pinto, R.S., Moysés, Z.P., Nakandakare, E.R., Quintão, E.C., Passarelli, M., Aminoguanidine and metformin prevent the reduced rate of HDL-mediated cell cholesterol efflux induced by formation of advanced glycation end products (2006) Int J Biochem Cell Biol., 38, pp. 392-403
  23. Machado, J.T., Iborra, R.T., Fusco, F.B., Castilho, G., Pinto, R.S., Machado-Lima, A., Nakandakare, E.R., N-acetylcysteine prevents endoplasmic reticulum stress elicited in macrophages by sérum albumin drawn from chronic kidney disease rats and selectively affects lipid transporters, ABCA-1 and ABCG-1 (2014) Atherosclerosis., 237, pp. 343-352
  24. Machado, J.T., Iborra, R.T., Fusco, F.B., Castilho, G., Pinto, R.S., Machado-Lima, A., Nakandakare, E.R., Advanced glycated albumin isolated from poorly controlled type 1 diabetes mellitus patients alters macrophage gene expression impairing ABCA-1-mediated reverse cholesterol transport (2013) Diabetes Metab Res Rev., 29, pp. 66-76
  25. Machado-Lima, A., Iborra, R.T., Pinto, R.S., Castilho, G., Sartori, C.H., Oliveira, E.R., Okuda, L.S., In type 2 diabetes mellitus glycated albumin alters macrophage gene expression. impairing ABCA1-mediated cholesterol efflux (2015) J. Cell Physiol., 230, pp. 1250-1257
  26. Machado-Lima, A., Torres, R., Mello, M., Bonavolonta, S.A.R., Machado, U.F., Correa-Giannella, M.L.C., Nakandakare, E.R., (2016) Mejora del control glucémico incrementa el ABCA-1 en macrófagos incubados com albumina aislada de diabéticos, , Paper presented at the 2nd Simposio Iberoamericano AGEs. Santiago, Universidade de Chile
  27. Mamo, J.C., Szeto, L., Steiner, G., Glycation of very low density lipoprotein from rat plasma impairs its catabolism (1990) Diabetologia., 33, pp. 339-345
  28. Monnier, V.M., Genuth, S., Sell, D.R., The pecking order of skin Advanced Glycation Endproducts (AGEs) as long-term markers of glycemic damage and risk factors for micro- and subclinical macrovascular disease progression in Type 1 diabetes (2016) Glycoconj J., 33, pp. 569-579
  29. Moriya, S., Yamazaki, M., Murakami, H., Maruyama, K., Uchiyama, S., Two soluble isoforms of receptors for advanced glycation end products (RAGE) in carotid atherosclerosis: The difference of soluble and endogenous secretory RAGE (2014) J Stroke Cerebrovasc Dis., 23, pp. 2540-2546
  30. Morris-Rosenfeld, S., Blessing, E., Preusch, M.R., Albrecht, C., Bierhaus, A., Andrassy, M., Nawroth, P.P., Deletion of bone marrow-derived receptor for advanced glycation end products inhibits atherosclerotic plaque progression (2011) Eur J Clin Invest, 41, pp. 1164-1171
  31. Nathan, D.M., The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview (2014) Diabetes Care, 37, pp. 9-16
  32. Nerlich, A.G., Schleicher, E.D., N(epsilon)-(carboxymethyl)lysine in atherosclerotic vascular lesions as a marker for local oxidative stress (1999) Atherosclerosis, 144 (1), pp. 41-47
  33. Ohgami, N., Advanced glycation end products (AGE) inhibit scavenger receptor class B type I-mediated reverse cholesterol transport: A new crossroad of AGE to cholesterol metabolism (2003) J Atheroscler Thromb., 10, pp. 1-6
  34. Okuda, L.S., Castilho, G., Rocco, D.D., Nakandakare, E.R., Catanozi, S., Passarelli, M., Advanced glycated albumin impairs HDL anti-inflammatory activity and primes macrophages for inflammatory response that reduces reverse cholesterol transport (2012) Biochim Biophys Acta., 1821, pp. 1485-1492
  35. Ott, C., Jacobs, K., Haucke, E., Navarrete Santos, A., Grune, T., Simm, A., Role of advanced glycation end products in cellular signaling (2014) Redox Biol., 2, pp. 411-429
  36. Pacher, P., Szabó, C., Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: Endothelial dysfunction, as a common underlying theme (2005) Antioxid Redox Signal., 7, pp. 1568-1580
  37. Park, L., Raman, K.G., Lee, K.J., Lu, Y., Ferran, L.J., Jr., Chow, W.S., Stern, D., Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts (1998) Nat Med, 4, pp. 1025-1031
  38. Passarelli, M., Tang, C., McDonald, T.O., O‘Brien, K.D., Gerrity, R.G., Heinecke, J.W., Oram, J.F., Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells (2005) Diabetes, 54, pp. 2198-2205
  39. Pinto, D.C., Jr., Silva, K.S., Passarelli, M., Machado, U.F., Advanced glycation end products-induced insulin resistance involvement of skeletal muscle GLUT4 repression (2016) Paper presented at the 2nd Simposio Iberoamericano AGEs., , Santiago, Universidade de Chile
  40. Ramasamy, R., Yan, S.F., Schmidt, A.M., The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes (2012) Vascul Pharmacol., 57, pp. 160-167
  41. Sell, D.R., Sun, W., Gao, X., Strauch, C., Lachin, J.M., Cleary, P.A., Genuth, S., Monnier, V.M., Skin collagen fluorophore LW-1 versus skin fluorescence as markers for the long-term progression of subclinical macrovascular disease in type 1 diabetes (2016) Cardiovasc Diabetol., 15, p. 30
  42. Semba, R.D., Bandinelli, S., Sun, K., Guralnik, J.M., Ferrucci, L., Plasma carboxymethyl-lysine, an advanced glycation end product, and all-cause and cardiovascular disease mortality in older community-dwelling adults (2009) J Am Geriatr Soc., 57, pp. 1874-1880
  43. Shah, M.S., Brownlee, M., Molecular and cellular mechanisms of cardiovascular disorders in diabetes (2016) Circ Res., 118, pp. 1808-1829
  44. Shekhtman, A., Ramasamy, R., Schmidt, A.M., Glycation & the RAGE axis: Targeting signal transduction through DIAPH1 (2017) Expert Ver Proteomics., 14, pp. 147-156
  45. Silva, K.S., Pinto, P.R., Gomes, D.J., Fabre, N.T., Thieme, K., Shimizu, M.H.M., Okamoto, M., N-acetylcysteine prevents lipid peroxidation, inflammation and insulin resistance induced by advanced glycated albumin in Wistar rats (2016) Paper presented at the 2nd Simposio Iberoamericano AGEs., , Santiago, Universidade de Chile
  46. Soran, H., Durrington, P.N., Susceptibility of LDL and its subfractions to glycation (2011) Curr Opin Lipidol., 22, pp. 254-261
  47. Stinghen, A.E., Massy, Z.A., Vlassara, H., Striker, G.E., Boullier, A., Uremic toxicity of advanced glycation end products in CKD (2016) J Am Soc Nephrol., 27 (2), pp. 354-370
  48. Stratton, I.M., Adler, A.I., Neil, H.A., Matthews, D.R., Manley, S.E., Cull, C.A., Hadden, D., Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study (2000) BMJ., 321, pp. 405-412
  49. Sveen, K.A., Dahl-Jørgensen, K., Stensaeth, K.H., Angel, K., Seljeflot, I., Sell, D.R., Monnier, V.M., Glucosepane and oxidative markers in skin collagen correlate with intima media thickness and arterial stiffness in long-term type 1 diabetes (2015) J Diabetes Complications, 29, pp. 407-412
  50. Tan, K.C., Reverse cholesterol transport in type 2 diabetes mellitus (2009) Diabetes Obes Metab, 11, pp. 534-543
  51. Wendt, T., Harja, E., Bucciarelli, L., Qu, W., Lu, Y., Rong, L.L., Jenkins, D.G., RAGE modulates vascular inflammation and atherosclerosis in a murine model of type 2 diabetes (2006) Atherosclerosis, 185, pp. 70-77
  52. Xu, L., Wang, Y.R., Li, P.C., Feng, B., Advanced glycation end products increase lipids accumulation in macrophages through upregulation of receptor of advanced glycation end products: Increasing uptake, esterification and decreasing efflux of cholesterol (2016) Lipids Health Dis., 15, pp. 161-173
  53. Yamagishi, S.I., Nakamura, N., Matsui, T., Glycation and cardiovascular disease in diabetes: A perspective on the concept of metabolic memory (2017) J Diabetes., 9, pp. 141-148
  54. Yamamoto, S., Narita, I., Kotani, K., The macrophage and its related cholesterol efflux as a HDL function index in atherosclerosis (2016) Clin Chim Acta., 457, pp. 117-122
  55. Younis, N., Sharma, R., Soran, H., Charlton-Menys, V., Elseweidy, M., Durrington, P.N., Glycation as an atherogenic modification of LDL (2008) Curr Opin Lipidol., 19, pp. 378-384