Functional and morphological evaluation of the trapezius muscle after spinal accessory nerve transfer to brachial plexus nerves

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
MICROSURGERY, v.44, n.2, article ID e31152, 8p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
IntroductionThe main innervation of the trapezius muscle is provided by the spinal accessory nerve. Several studies describe the contributions of cervical plexus roots to the trapezius muscle innervation, either directly or through connections with the spinal accessory nerve. There is no adequate understanding of how the trapezius muscle is affected after using the spinal accessory nerve in nerve transfer procedures with the usual technique, preserving at least 1 branch for the upper trapezius.MethodsWe evaluated 20 patients with sequelae of traumatic brachial plexus injury who underwent surgical procedures for brachial plexus repair or free muscle transfer, which included the spinal accessory nerve transfer technique and were followed for a minimum of 1 year. The three portions trapezius muscle were evaluated by physical examination, magnetic resonance imaging (analysis of fatty degeneration) and electromyography.ResultsIn all evaluation methods, the middle and lower portions of the trapezius muscle showed more significant morphological and/or functional impairment than the upper portion, in most cases. There was a statistically significant difference in all the complementary exams results, between the affected side (with sacrifice of the nerve) versus the normal side, in the middle and lower portions of the trapezius muscle.ConclusionsPhysical examination alone is not sufficient to determine the residual functionality of the trapezius muscle. Magnetic resonance imaging and electromyography are useful tools to assess both morphological involvement of the trapezius muscle and nerve conduction impairment of the trapezius muscle, respectively. The results suggest that the middle and lower portions of the trapezius muscle are affected by previous SAN transfer and should be considered with caution for further muscle transfer procedures.
Palavras-chave
Referências
  1. Aibinder WR, 2018, OBERE EXTREMITAET-SC, V13, P269, DOI 10.1007/s11678-018-0489-6
  2. AZZE RJ, 1994, MICROSURG, V15, P28, DOI 10.1002/micr.1920150109
  3. Bertelli JA, 2011, MICROSURG, V31, P263, DOI 10.1002/micr.20838
  4. Carter GT, 2000, HAND CLIN, V16, P1
  5. Cho AB, 2019, MICROSURG, V39, P400, DOI 10.1002/micr.30426
  6. Chung T, 2014, NEUROIMAG CLIN N AM, V24, P49, DOI 10.1016/j.nic.2013.03.023
  7. Colbert Stephen H, 2006, Hand (N Y), V1, P71, DOI 10.1007/s11552-006-9004-4
  8. de Rezende MR, 2013, CLINICS, V68, P411, DOI 10.6061/clinics/2013(03)R02
  9. Durazzo MD, 2009, CLIN ANAT, V22, P471, DOI 10.1002/ca.20796
  10. Elhassan B, 2010, J HAND SURG-AM, V35A, P1211, DOI 10.1016/j.jhsa.2010.05.001
  11. Fischer MA, 2014, EUR RADIOL, V24, P1366, DOI 10.1007/s00330-014-3121-1
  12. GOUTALLIER D, 1994, CLIN ORTHOP RELAT R, P78
  13. Hill JR, 2021, J HAND SURG-AM, V46, P778, DOI 10.1016/j.jhsa.2021.05.008
  14. Johal J, 2019, ANAT REC, V302, P620, DOI 10.1002/ar.23823
  15. JOHNSON G, 1994, CLIN BIOMECH, V9, P44, DOI 10.1016/0268-0033(94)90057-4
  16. Kamath S, 2008, SKELETAL RADIOL, V37, P397, DOI 10.1007/s00256-007-0409-0
  17. Kierner AC, 2001, ARCH OTOLARYNGOL, V127, P1230, DOI 10.1001/archotol.127.10.1230
  18. Klaus-Peter V., 2005, O livro dos musculos, V1st ed.
  19. Kullmer K, 1998, ARCH ORTHOP TRAUM SU, V117, P228, DOI 10.1007/s004020050234
  20. Lloyd S, 2007, J LARYNGOL OTOL, V121, P1118, DOI 10.1017/S0022215107000461
  21. Makel M, 2023, NEUROL RES, V45, P489, DOI 10.1080/01616412.2022.2156721
  22. Mallik A, 2005, J NEUROL NEUROSUR PS, V76, P23, DOI 10.1136/jnnp.2005.069138
  23. Matsumura N, 2017, J SHOULDER ELB SURG, V26, pE309, DOI 10.1016/j.jse.2017.03.019
  24. McClure P., 2017, Disorders of the scapula and their role in shoulder injury, V1st ed., P42, DOI [10.1007/978-3-319-53584-5, DOI 10.1007/978-3-319-53584-5]
  25. Melis B, 2009, ORTHOP TRAUMATOL-SUR, V95, P319, DOI 10.1016/j.otsr.2009.05.001
  26. Miyata K, 1997, AM J OTOLARYNG, V18, P197, DOI 10.1016/S0196-0709(97)90082-X
  27. Noland SS, 2019, J AM ACAD ORTHOP SUR, V27, P705, DOI 10.5435/JAAOS-D-18-00433
  28. Nori S, 1997, MUSCLE NERVE, V20, P279, DOI 10.1002/(SICI)1097-4598(199703)20:3<279::AID-MUS3>3.0.CO;2-8
  29. O'Sullivan C, 2009, MANUAL THER, V14, P572, DOI 10.1016/j.math.2008.12.005
  30. Overland J, 2016, J LARYNGOL OTOL, V130, P969, DOI 10.1017/S0022215116008148
  31. Pereira MT, 1999, J HAND SURG-BRIT EUR, V24B, P368, DOI 10.1054/jhsb.1999.0158
  32. Restrepo CE, 2015, CLIN ANAT, V28, P467, DOI 10.1002/ca.22492
  33. Ryan S, 2007, ANAT SCI INT, V82, P1, DOI 10.1111/j.1447-073x.2006.00154.x
  34. Simon NG, 2015, MUSCLE NERVE, V52, P221, DOI 10.1002/mus.24519
  35. Smith AC, 2014, MUSCLE NERVE, V50, P170, DOI 10.1002/mus.24255
  36. Souza FHM, 2014, ACTA NEUROCHIR, V156, P2345, DOI 10.1007/s00701-014-2222-6
  37. Spinner R. J., 2021, Green's operative hand surgery, V8th ed., P1307
  38. STACEY RJ, 1995, J CRANIO MAXILL SURG, V23, P250, DOI 10.1016/S1010-5182(05)80216-1
  39. Tavee J, 2019, HAND CLINIC, V160, P217, DOI 10.1016/B978-0-444-64032-1.00014-X
  40. Tubbs RS, 2011, J NEUROSURG-SPINE, V14, P626, DOI 10.3171/2011.1.SPINE10717
  41. Wen J, 2018, ULTRASOUND MED BIOL, V44, P458, DOI 10.1016/j.ultrasmedbio.2017.08.1887
  42. Yamauti LS, 2020, ACTA ORTOP BRAS, V28, P186, DOI 10.1590/1413-785220202804233302