Joint effect of heat and air pollution on mortality in 620 cities of 36 countries

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Autores
STAFOGGIA, Massimo
MICHELOZZI, Paola
SCHNEIDER, Alexandra
ARMSTRONG, Ben
SCORTICHINI, Matteo
RAI, Masna
ACHILLEOS, Souzana
ALAHMAD, Barrak
ANALITIS, Antonis
ASTROM, Christofer
Citação
ENVIRONMENT INTERNATIONAL, v.181, article ID 108258, 10p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The epidemiological evidence on the interaction between heat and ambient air pollution on mor-tality is still inconsistent. Objectives: To investigate the interaction between heat and ambient air pollution on daily mortality in a large dataset of 620 cities from 36 countries. Methods: We used daily data on all-cause mortality, air temperature, particulate matter <= 10 mu m (PM10), PM <= 2.5 mu m (PM2.5), nitrogen dioxide (NO2), and ozone (O3) from 620 cities in 36 countries in the period 1995-2020. We restricted the analysis to the six consecutive warmest months in each city. City-specific data were analysed with over-dispersed Poisson regression models, followed by a multilevel random-effects meta-analysis. The joint association between air temperature and air pollutants was modelled with product terms between non-linear functions for air temperature and linear functions for air pollutants. Results: We analyzed 22,630,598 deaths. An increase in mean temperature from the 75th to the 99th percentile of city-specific distributions was associated with an average 8.9 % (95 % confidence interval: 7.1 %, 10.7 %) mortality increment, ranging between 5.3 % (3.8 %, 6.9 %) and 12.8 % (8.7 %, 17.0 %), when daily PM10 was equal to 10 or 90 mu g/m3, respectively. Corresponding estimates when daily O3 concentrations were 40 or 160 mu g/ m3 were 2.9 % (1.1 %, 4.7 %) and 12.5 % (6.9 %, 18.5 %), respectively. Similarly, a 10 mu g/m3 increment in PM10 was associated with a 0.54 % (0.10 %, 0.98 %) and 1.21 % (0.69 %, 1.72 %) increase in mortality when daily air temperature was set to the 1st and 99th city-specific percentiles, respectively. Corresponding mortality estimate for O3 across these temperature percentiles were 0.00 % (-0.44 %, 0.44 %) and 0.53 % (0.38 %, 0.68 %). Similar effect modification results, although slightly weaker, were found for PM2.5 and NO2. Conclusions: Suggestive evidence of effect modification between air temperature and air pollutants on mortality during the warm period was found in a global dataset of 620 cities.
Palavras-chave
Air temperature, Air pollution, Effect modification, Epidemiology, Mortality
Referências
  1. Analitis A, 2014, EPIDEMIOLOGY, V25, P15, DOI 10.1097/EDE.0b013e31828ac01b
  2. Anderson BG, 2009, EPIDEMIOLOGY, V20, P205, DOI 10.1097/EDE.0b013e318190ee08
  3. Anenberg SC, 2020, ENVIRON HEALTH-GLOB, V19, DOI 10.1186/s12940-020-00681-z
  4. Basu R, 2009, ENVIRON HEALTH-GLOB, V8, DOI 10.1186/1476-069X-8-40
  5. Bouchama A, 2007, ARCH INTERN MED, V167, P2170, DOI 10.1001/archinte.167.20.ira70009
  6. Chen F, 2017, ENVIRON POLLUT, V224, P326, DOI 10.1016/j.envpol.2017.02.012
  7. Chen K, 2020, CURR ENV HLTH REP, V7, P243, DOI 10.1007/s40572-020-00281-6
  8. Chen K, 2018, ENVIRON INT, V116, P186, DOI 10.1016/j.envint.2018.04.021
  9. Dominski FH, 2021, ENVIRON RES, V201, DOI 10.1016/j.envres.2021.111487
  10. Gasparrini A, 2015, LANCET, V386, P369, DOI 10.1016/S0140-6736(14)62114-0
  11. Gasparrini A, 2015, ENVIRON HEALTH PERSP, V123, P1200, DOI 10.1289/ehp.1409070
  12. Gordon CJ, 2003, ENVIRON RES, V92, P1, DOI 10.1016/S0013-9351(02)00008-7
  13. Guo YM, 2014, EPIDEMIOLOGY, V25, P781, DOI 10.1097/EDE.0000000000000165
  14. Jhun I, 2014, ENVIRON INT, V73, P128, DOI 10.1016/j.envint.2014.07.009
  15. Kinney PL, 2018, CURR ENV HLTH REP, V5, P179, DOI 10.1007/s40572-018-0188-x
  16. Lavigne E, 2014, ENVIRON HEALTH-GLOB, V13, DOI 10.1186/1476-069X-13-5
  17. Li J, 2017, SCI TOTAL ENVIRON, V575, P1556, DOI 10.1016/j.scitotenv.2016.10.070
  18. Liu C, 2019, NEW ENGL J MED, V381, P705, DOI 10.1056/NEJMoa1817364
  19. Meng X, 2021, BMJ-BRIT MED J, V372, DOI 10.1136/bmj.n534
  20. Orellano P, 2020, ENVIRON INT, V142, DOI 10.1016/j.envint.2020.105876
  21. Portner H.-.-O., 2022, contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change, P3056
  22. Rai M, 2023, ENVIRON INT, V174, DOI 10.1016/j.envint.2023.107825
  23. Ren C, 2008, OCCUP ENVIRON MED, V65, P255, DOI 10.1136/oem.2007.033878
  24. Romanello M, 2021, LANCET, V398, P1619, DOI 10.1016/S0140-6736(21)01787-6
  25. Rückerl R, 2011, INHAL TOXICOL, V23, P555, DOI 10.3109/08958378.2011.593587
  26. Scortichini M, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15081771
  27. Sera F, 2019, INT J EPIDEMIOL, V48, P1101, DOI 10.1093/ije/dyz008
  28. Shi WY, 2020, ENVIRON SCI TECHNOL, V54, P2859, DOI 10.1021/acs.est.9b05978
  29. Song XP, 2017, SCI TOTAL ENVIRON, V586, P241, DOI 10.1016/j.scitotenv.2017.01.212
  30. Stafoggia M, 2010, AM J RESP CRIT CARE, V182, P376, DOI 10.1164/rccm.200908-1269OC
  31. Vicedo-Cabrera AM, 2021, NAT CLIM CHANGE, V11, P492, DOI 10.1038/s41558-021-01058-x
  32. Vicedo-Cabrera AM, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.m108
  33. WHO, 2021, WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, DOI [10.1016/S0140-6736(06)69530-5, DOI 10.1016/S0140-6736(06)69530-5]
  34. Zhang Y, 2010, SCI TOTAL ENVIRON, V408, P524, DOI 10.1016/j.scitotenv.2009.10.068
  35. Zhao Q, 2021, LANCET PLANET HEALTH, V5, pE415, DOI 10.1016/S2542-5196(21)00081-4