Severe COVID-19 patients exhibit elevated levels of autoantibodies targeting cardiolipin and platelet glycoprotein with age: a systems biology approach

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBL GROUP
Autores
FONSECA, Dennyson Leandro M.
FILGUEIRAS, Igor Salerno
MARQUES, Alexandre H. C.
VOJDANI, Elroy
HALPERT, Gilad
OSTRINSKI, Yuri
BAIOCCHI, Gabriela Crispim
PLACA, Desiree Rodrigues
FREIRE, Paula P.
POUR, Shahab Zaki
Citação
NPJ AGING, v.9, n.1, article ID 21, 14p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) severity due to immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular disorder, and chronic respiratory disease). However, despite the well-known influence of age on autoantibody biology in health and disease, its impact on the risk of developing severe COVID-19 remains poorly explored. Here, we performed a cross-sectional study of autoantibodies directed against 58 targets associated with autoimmune diseases in 159 individuals with different COVID-19 severity (71 mild, 61 moderate, and 27 with severe symptoms) and 73 healthy controls. We found that the natural production of autoantibodies increases with age and is exacerbated by SARS-CoV-2 infection, mostly in severe COVID-19 patients. Multiple linear regression analysis showed that severe COVID-19 patients have a significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid ss peptide, ss catenin, cardiolipin, claudin, enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein). Principal component analysis with spectrum decomposition and hierarchical clustering analysis based on these autoantibodies indicated an age-dependent stratification of severe COVID-19 patients. Random forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as the three most crucial autoantibodies for the stratification of severe COVID-19 patients >= 50 years of age. Follow-up analysis using binomial logistic regression found that anti-cardiolipin and anti-platelet glycoprotein autoantibodies significantly increased the likelihood of developing a severe COVID-19 phenotype with aging. These findings provide key insights to explain why aging increases the chance of developing more severe COVID-19 phenotypes.
Palavras-chave
Referências
  1. Akbar AN, 2020, SCIENCE, V369, P256, DOI 10.1126/science.abb0762
  2. Amendt T, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2115695119
  3. Andrzejewska A, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.02474
  4. Arvey A, 2020, IMMUN AGEING, V17, DOI 10.1186/s12979-020-00193-x
  5. Aschman T, 2021, JAMA NEUROL, V78, P948, DOI 10.1001/jamaneurol.2021.2004
  6. Baiocchi GC, 2022, medRxiv, DOI [10.1101/2022.02.17.22271057, 10.1101/2022.02.17.22271057, DOI 10.1101/2022.02.17.22271057]
  7. Baiocchi GC, 2023, J MED VIROL, V95, DOI 10.1002/jmv.28538
  8. Balduzzi S, 2019, EVID-BASED MENT HEAL, V22, P153, DOI 10.1136/ebmental-2019-300117
  9. Barbé-Tuana F, 2020, SEMIN IMMUNOPATHOL, V42, P545, DOI 10.1007/s00281-020-00806-z
  10. Bartleson JM, 2021, NATURE AGING, V1, P769, DOI 10.1038/s43587-021-00114-7
  11. Bastard P, 2022, SCI IMMUNOL, V7, P1, DOI 10.1126/sciimmunol.abp8966
  12. Gregorova M, 2020, ELIFE, V9, DOI 10.7554/eLife.63430
  13. Greinacher Andreas, 2021, Blood, V138, P1269, DOI 10.1182/blood.2021012938
  14. Grolleau-Julius A, 2010, CLIN REV ALLERG IMMU, V39, P42, DOI 10.1007/s12016-009-8169-3
  15. Gu ZG, 2016, BIOINFORMATICS, V32, P2847, DOI 10.1093/bioinformatics/btw313
  16. Gu ZG, 2014, BIOINFORMATICS, V30, P2811, DOI 10.1093/bioinformatics/btu393
  17. Hou Y, 2022, AGING CELL, V21, DOI 10.1111/acel.13544
  18. Huang SJ, 2018, CANCER GENOM PROTEOM, V15, P41, DOI 10.21873/cgp.20063
  19. Juanes-Velasco P, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.732197
  20. Karatzoglou A., 2004, J STAT SOFTW, V11, P1, DOI [10.18637/jss.v011.i09, DOI 10.18637/JSS.V011.I09]
  21. Karatzoglou A., 2022, KERNEL BASED MACHINE
  22. Liu Y, 2020, EUR RESPIR J, V55, DOI 10.1183/13993003.01112-2020
  23. Kassambara Alboukadel, 2020, CRAN
  24. Katsoularis I, 2022, BMJ-BRIT MED J, V377, DOI 10.1136/bmj-2021-069590
  25. Khamsi R, 2021, NATURE, V590, P29, DOI 10.1038/d41586-021-00149-1
  26. Knight JS, 2021, J CLIN INVEST, V131, DOI 10.1172/JCI154886
  27. Lambert MP, 2017, BLOOD, V129, P2829, DOI 10.1182/blood-2017-03-754119
  28. Lever J, 2017, NAT METHODS, V14, P641, DOI 10.1038/nmeth.4346
  29. Li YN, 2020, STROKE VASC NEUROL, V5, P279, DOI 10.1136/svn-2020-000431
  30. Libby P, 2020, EUR HEART J, V41, P3038, DOI 10.1093/eurheartj/ehaa623
  31. Liu QB, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2213361119
  32. López-Otín C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039
  33. Ludwig RJ, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00603
  34. Lutz HU, 2009, TRENDS IMMUNOL, V30, P43, DOI 10.1016/j.it.2008.10.002
  35. Lynch SM, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10123367
  36. Ma SL, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.00318
  37. MANOUSSAKIS MN, 1987, CLIN EXP IMMUNOL, V69, P557
  38. Manry J, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2200413119
  39. Mehandru S, 2022, NAT IMMUNOL, V23, P194, DOI 10.1038/s41590-021-01104-y
  40. Merad M, 2022, SCIENCE, V375, P1122, DOI 10.1126/science.abm8108
  41. Pacheco Y, 2017, J TRANSL MED, V15, DOI 10.1186/s12967-017-1345-y
  42. Merad M, 2020, NAT REV IMMUNOL, V20, P448, DOI 10.1038/s41577-020-0353-y
  43. Meyer D., 2020, E1071 MISC FUNCTIONS
  44. Moll G, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.01091
  45. Nagele EP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060726
  46. Nakamura T, 2022, THROMB RES, V209, P80, DOI 10.1016/j.thromres.2021.11.030
  47. Neville C, 2003, THROMB HAEMOSTASIS, V90, P108, DOI 10.1055/s-0037-1613606
  48. Njemini R, 2002, CLIN EXP IMMUNOL, V127, P99, DOI 10.1046/j.1365-2249.2002.01713.x
  49. Noble WS, 2006, NAT BIOTECHNOL, V24, P1565, DOI 10.1038/nbt1206-1565
  50. Nunez-Castilla J, 2022, VIRUSES-BASEL, V14, DOI 10.3390/v14071415
  51. Páez-Franco JC, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0274910
  52. Quezada-Feijoo M, 2021, J CLIN MED, V10, DOI 10.3390/jcm10225433
  53. R Development Core Team, 2021, R LANG ENV STAT COMP, DOI 10.1038/sj.hdy.6800737
  54. rdrr.io, 2021, RSTATIX PIPE FRIENDL
  55. Ricciardi C, 2020, HEALTH INFORM J, V26, P2181, DOI 10.1177/1460458219899210
  56. Ringnér M, 2008, NAT BIOTECHNOL, V26, P303, DOI 10.1038/nbt0308-303
  57. Rojas M, 2022, J TRANSL MED, V20, DOI 10.1186/s12967-022-03328-4
  58. RStudio, 2021, OP SOURC PROF SOFTW
  59. Sachs MC, 2017, J STAT SOFTW, V79, DOI 10.18637/jss.v079.c02
  60. Thomas ET, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2018-028150
  61. Schimke LF, 2022, CELLS-BASEL, V11, DOI 10.3390/cells11050847
  62. Schneider A, 2010, DTSCH ARZTEBL INT, V107, P776, DOI [10.3238/arztebl.2010.0776, 10.3238/arztebl.2010.0799]
  63. Shome M, 2022, CELL REP, V39, DOI 10.1016/j.celrep.2022.110873
  64. Silverberg JI, 2021, J ALLER CL IMM-PRACT, V9, P3331, DOI 10.1016/j.jaip.2021.06.046
  65. Sorensen RJD, 2022, LANCET, V399, P1469, DOI 10.1016/S0140-6736(21)02867-1
  66. Sotzny F, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.981532
  67. Sperandei S, 2014, BIOCHEM MEDICA, V24, P12, DOI 10.11613/BM.2014.003
  68. Spudich S, 2022, SCIENCE, V375, P267, DOI 10.1126/science.abm2052
  69. Taeschler P, 2022, ALLERGY, DOI 10.1111/all.15302
  70. Trahtemberg U, 2021, ANN RHEUM DIS, V80, P1236, DOI 10.1136/annrheumdis-2021-220206
  71. Tripathi U, 2021, AGING-US, V13, P21838, DOI 10.18632/aging.203560
  72. Venables W. N., 2002, MODERN APPL STAT S R
  73. Vojdani A, 2021, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.617089
  74. Vojdani A, 2020, CLIN IMMUNOL, V217, DOI 10.1016/j.clim.2020.108480
  75. Wang EY, 2021, NATURE, V595, P283, DOI [10.1101/2020.12.10.20247205, 10.1038/s41586-021-03631-y]
  76. Wang Y, 2021, IMMUNITY, V54, P632, DOI 10.1016/j.immuni.2021.02.003
  77. Watanabe M, 2007, FEBS LETT, V581, P2017, DOI 10.1016/j.febslet.2007.04.029
  78. Wickham H., 2016, GGPLOT2 ELEGANT GRAP, DOI 10.1007/978-3-319-24277-4
  79. Bastard P, 2021, SCI IMMUNOL, V6, DOI 10.1126/sciimmunol.abl4340
  80. Wickham H, 2023, GGPLOT2 CREATE ELEGA
  81. Woodruff M, 2020, medRxiv, DOI [10.1101/2020.10.21.20216192, 10.1101/2020.10.21.20216192, DOI 10.1101/2020.10.21.20216192]
  82. World Health Organization, 2021, COVID 19 CLIN MAN LI
  83. Xie Y, 2022, NAT MED, V28, P583, DOI 10.1038/s41591-022-01689-3
  84. Xu E, 2022, NAT MED, V28, P2406, DOI 10.1038/s41591-022-02001-z
  85. Zhang Q, 2022, NATURE, V603, P587, DOI 10.1038/s41586-022-04447-0
  86. Zuniga M., 2021, MEDRXIV, DOI 10.1101/2020.12.28.20248807
  87. Zuo Y, 2020, SCI TRANSL MED, V12, DOI 10.1126/scitranslmed.abd3876
  88. Zyskind I, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2021.2816
  89. Bastard P, 2020, SCIENCE, V370, P423, DOI 10.1126/science.abd4585
  90. Beer J, 2022, J EXP MED, V219, DOI 10.1084/jem.20220621
  91. Bertin D, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-15969-y
  92. Borghi MO, 2020, FRONT IMMUNOL, V11, DOI [10.3389/fimmu.2020.584241, 10.1101/2020.06.17.20134114]
  93. Braeken J, 2017, PSYCHOL METHODS, V22, P450, DOI 10.1037/met0000074
  94. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
  95. Bro R, 2014, ANAL METHODS-UK, V6, P2812, DOI 10.1039/c3ay41907j
  96. Cabral-Marques O, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28905-5
  97. Cabral-Marques O, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07598-9
  98. Cabral-Marques O, 2017, NAT REV RHEUMATOL, V13, P648, DOI 10.1038/nrrheum.2017.134
  99. Cao X, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-29801-8
  100. Cavalli E, 2020, INT J MOL MED, V46, P903, DOI 10.3892/ijmm.2020.4659
  101. CHAKRAVARTY KK, 1991, POSTGRAD MED J, V67, P358, DOI 10.1136/pgmj.67.786.358
  102. Chalan Paulina, 2015, Curr Aging Sci, V8, P131
  103. Chang SE, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-25509-3
  104. Chen YY, 2021, AGEING RES REV, V65, DOI 10.1016/j.arr.2020.101205
  105. Chongsuvivatwong V., 2015, EPIDISPLAY EPIDEMIOL, V3
  106. ClinicalTrials.gov, 2021, LOS PAT COVID 19 REQ
  107. Collier DA, 2021, NATURE, V596, P417, DOI 10.1038/s41586-021-03739-1
  108. CRAN, 2023, R PROJECT STAT COMPU
  109. Davies NG, 2020, NAT MED, V26, P1205, DOI 10.1038/s41591-020-0962-9
  110. Davis HE, 2021, ECLINICALMEDICINE, V38, DOI 10.1016/j.eclinm.2021.101019
  111. Chuffa LGD, 2022, J MOL MED, V100, P285, DOI 10.1007/s00109-021-02161-4
  112. Dotan A, 2021, AUTOIMMUN REV, V20, DOI 10.1016/j.autrev.2021.102792
  113. Ehrenfeld M, 2020, AUTOIMMUN REV, V19, DOI 10.1016/j.autrev.2020.102597
  114. Fagyas M, 2022, GEROSCIENCE, V44, P2347, DOI 10.1007/s11357-022-00649-6
  115. Farris AD, 2020, NAT IMMUNOL, V21, P1478, DOI 10.1038/s41590-020-00822-z
  116. Fath MK, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.705772
  117. Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146
  118. Fleg JL, 2012, HEART FAIL REV, V17, P545, DOI 10.1007/s10741-011-9270-2
  119. Galeotti C, 2020, NAT REV RHEUMATOL, V16, P413, DOI 10.1038/s41584-020-0448-7