Autoantibodies from patients with kidney allograft vasculopathy stimulate a proinflammatory switch in endothelial cells and monocytes mediated via GPCR-directed PAR1-TNF-α signaling

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
MOLL, Guido
LUECHT, Christian
GYAMFI, Michael Adu
FONSECA, Dennyson L. M. da
WANG, Pinchao
ZHAO, Hongfan
GONG, Zexian
CHEN, Lei
ASHRAF, Muhamad Imtiaz
HEIDECKE, Harald
Citação
FRONTIERS IN IMMUNOLOGY, v.14, article ID 1289744, 15p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Non-HLA-directed regulatory autoantibodies (RABs) are known to target G-protein coupled receptors (GPCRs) and thereby contribute to kidney transplant vasculopathy and failure. However, the detailed underlying signaling mechanisms in human microvascular endothelial cells (HMECs) and immune cells need to be clarified in more detail. In this study, we compared the immune stimulatory effects and concomitant intracellular and extracellular signaling mechanisms of immunoglobulin G (IgG)-fractions from kidney transplant patients with allograft vasculopathy (KTx-IgG), to that from patients without vasculopathy, or matched healthy controls (Con-IgG). We found that KTx-IgG from patients with vasculopathy, but not KTx-IgG from patients without vasculopathy or Con-IgG, elicits HMEC activation and subsequent upregulation and secretion of tumor necrosis factor alpha (TNF-alpha) from HMECs, which was amplified in the presence of the protease-activated thrombin receptor 1 (PAR1) activator thrombin, but could be omitted by selectively blocking the PAR1 receptor. The amount and activity of the TNF-alpha secreted by HMECs stimulated with KTx-IgG from patients with vasculopathy was sufficient to induce subsequent THP-1 monocytic cell activation. Furthermore, AP-1/c-FOS, was identified as crucial transcription factor complex controlling the KTx-IgG-induced endothelial TNF-alpha synthesis, and mircoRNA-let-7f-5p as a regulatory element in modulating the underlying signaling cascade. In conclusion, exposure of HMECs to KTx-IgG from patients with allograft vasculopathy, but not KTx-IgG from patients without vasculopathy or healthy Con-IgG, triggers signaling through the PAR1-AP-1/c-FOS-miRNA-let7-axis, to control TNF-alpha gene transcription and TNF-alpha-induced monocyte activation. These observations offer a greater mechanistic understanding of endothelial cells and subsequent immune cell activation in the clinical setting of transplant vasculopathy that can eventually lead to transplant failure, irrespective of alloantigen-directed responses.
Palavras-chave
chronic kidney disease (CKD), end-stage renal disease (ESRD), kidney transplantation (KTx), kidney allograft vasculopathy, endothelial cells (ECs), non-HLA-directed regulatory autoantibodies (RABs), autoantibodies, tumor necrosis factor-alpha (TNF-alpha)
Referências
  1. Andrzejewska A, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.02474
  2. Aubert O, 2019, J AM SOC NEPHROL, V30, P625, DOI 10.1681/ASN.2018070777
  3. Bagang N, 2023, CHEM-BIOL INTERACT, V377, DOI 10.1016/j.cbi.2023.110470
  4. Banasik M, 2014, TRANSPL IMMUNOL, V30, P24, DOI 10.1016/j.trim.2013.10.007
  5. Bartel DP, 2004, CELL, V116, P281, DOI 10.1016/S0092-8674(04)00045-5
  6. Bonauer A, 2009, SCIENCE, V324, P1710, DOI 10.1126/science.1174381
  7. Bonder CS, 2013, KIDNEY INT, V84, P1065, DOI 10.1038/ki.2013.306
  8. Brennan E, 2017, DIABETES, V66, P2266, DOI 10.2337/db16-1405
  9. Cabral-Marques O, 2023, AUTOIMMUN REV, V22, DOI 10.1016/j.autrev.2023.103310
  10. Cabral-Marques O, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28905-5
  11. Cabral-Marques O, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07598-9
  12. Cabral-Marques O, 2017, NAT REV RHEUMATOL, V13, P648, DOI 10.1038/nrrheum.2017.134
  13. Cabral-Marques O, 2016, AUTOIMMUN REV, V15, P690, DOI 10.1016/j.autrev.2016.03.005
  14. Callemeyn J, 2022, KIDNEY INT, V101, P692, DOI 10.1016/j.kint.2021.11.029
  15. Catar R, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.774052
  16. Catar R, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10040910
  17. Catar R, 2017, J AM SOC NEPHROL, V28, P1188, DOI 10.1681/ASN.2015101169
  18. Catar R, 2013, KIDNEY INT, V84, P1119, DOI 10.1038/ki.2013.217
  19. Catar RA, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.821681
  20. Catar RA, 2022, KIDNEY INT, V101, P498, DOI 10.1016/j.kint.2021.09.029
  21. Chandrabalan A, 2021, FEBS J, V288, P2697, DOI 10.1111/febs.15829
  22. Connolly-Andersen AM, 2011, J VIROL, V85, P7766, DOI 10.1128/JVI.02469-10
  23. Couto PS, 2023, FRONT IMMUNOL, V14, DOI 10.3389/fimmu.2023.1200180
  24. Crespo M, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.703457
  25. Crowley Lisa C, 2016, Cold Spring Harb Protoc, V2016, DOI 10.1101/pdb.prot087163
  26. Dragun D, 2005, NEW ENGL J MED, V352, P558, DOI 10.1056/NEJMoa035717
  27. Dragun D, 2016, KIDNEY INT, V90, P280, DOI 10.1016/j.kint.2016.03.019
  28. Dragun D, 2013, CURR OPIN ORGAN TRAN, V18, P430, DOI 10.1097/MOT.0b013e3283636e55
  29. Dragun D, 2012, HUM IMMUNOL, V73, P1282, DOI 10.1016/j.humimm.2012.07.010
  30. Dragun D, 2012, CURR OPIN ORGAN TRAN, V17, P440, DOI 10.1097/MOT.0b013e328355f12b
  31. Dragun D, 2009, THROMB HAEMOSTASIS, V101, P643, DOI 10.1160/TH08-10-0710
  32. Dragun D, 2009, CONTRIB NEPHROL, V162, P129, DOI 10.1159/000170845
  33. Fonseca DLM, 2023, NPJ AGING, V9, DOI 10.1038/s41514-023-00118-0
  34. Fox OW, 2020, J THROMB HAEMOST, V18, P6, DOI 10.1111/jth.14643
  35. Gholami Ahmad, 2021, Biomed Res Int, V2021, P4450162, DOI 10.1155/2021/4450162
  36. Gilles ME, 2018, EXPERT OPIN THER TAR, V22, P929, DOI 10.1080/14728222.2018.1535594
  37. Gough P, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.585880
  38. Grebe SO, 2011, CLIN TRANSPLANT, V25, P744, DOI 10.1111/j.1399-0012.2010.01345.x
  39. Han X, 2021, RES PRACT THROMB HAE, V5, P17, DOI 10.1002/rth2.12454
  40. Hara T, 2023, J CARDIOL, V81, P337, DOI [10.1016/j?cc.2022.09.013, 10.1016/j.jjcc.2022.09.013]
  41. Hegner B, 2023, RHEUMATOLOGY, V62, P2284, DOI 10.1093/rheumatology/keac594
  42. Heir R, 2020, FRONT CELL NEUROSCI, V14, DOI 10.3389/fncel.2020.565841
  43. Hermans E, 2003, PHARMACOL THERAPEUT, V99, P25, DOI 10.1016/S0163-7258(03)00051-2
  44. Imaizumi T, 2000, ARTERIOSCL THROM VAS, V20, P410, DOI 10.1161/01.ATV.20.2.410
  45. Ishida M, 2015, J INTENSIVE CARE, V3, DOI 10.1186/s40560-015-0115-2
  46. JAFFE EA, 1987, HUM PATHOL, V18, P234, DOI 10.1016/S0046-8177(87)80005-9
  47. Jang DI, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22052719
  48. Kalliolias GD, 2016, NAT REV RHEUMATOL, V12, P49, DOI 10.1038/nrrheum.2015.169
  49. Kuenze G, 2023, BLOOD, V141, P2675, DOI 10.1182/blood.2023019775
  50. Lefaucheur C, 2019, KIDNEY INT, V96, P189, DOI 10.1016/j.kint.2019.01.030
  51. Lefkowitz RJ, 2002, MOL PHARMACOL, V62, P971, DOI 10.1124/mol.62.5.971
  52. Liu J, 2006, BIOCHEM BIOPH RES CO, V343, P183, DOI 10.1016/j.bbrc.2006.02.136
  53. Moll G, 2014, STEM CELLS, V32, P2430, DOI 10.1002/stem.1729
  54. Moll G, 2012, STEM CELLS, V30, P1565, DOI 10.1002/stem.1111
  55. Moll G, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021703
  56. Morrison JT, 2022, J CARDIOVASC PHARM T, V27, DOI 10.1177/10742484211056115
  57. Pascual M, 2002, NEW ENGL J MED, V346, P580, DOI 10.1056/NEJMra011295
  58. Pearl MH, 2020, KIDNEY INT REP, V5, P1925, DOI 10.1016/j.ekir.2020.09.004
  59. Philippe A, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23073984
  60. Pries AR, 2000, PFLUG ARCH EUR J PHY, V440, P653, DOI 10.1007/s004240000307
  61. Qi F, 2008, TRANSPLANTATION, V86, P1267, DOI 10.1097/TP.0b013e318188d433
  62. Ranta V, 1999, CRIT CARE MED, V27, P2184, DOI 10.1097/00003246-199910000-00019
  63. Reinsmoen NL, 2014, TRANSPLANTATION, V97, P595, DOI 10.1097/01.TP.0000436927.08026.a8
  64. Reinsmoen NL, 2010, TRANSPLANTATION, V90, P1473, DOI 10.1097/TP.0b013e3181fd97f1
  65. Roemhild A, 2020, BMJ-BRIT MED J, V371, DOI 10.1136/bmj.m3734
  66. Saliminejad K, 2019, J CELL PHYSIOL, V234, P5451, DOI 10.1002/jcp.27486
  67. Sayegh MH, 2004, NEW ENGL J MED, V351, P2761, DOI 10.1056/NEJMon043418
  68. Sikorska D, 2022, J CLIN MED, V11, DOI 10.3390/jcm11030833
  69. Simon M, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms222111793
  70. Simon T, 2003, AM J TRANSPLANT, V3, P1121, DOI 10.1034/j.1600-6143.2003.00187.x
  71. Speck D, 2022, FRONT ENDOCRINOL, V13, DOI 10.3389/fendo.2022.880002
  72. Sprague AH, 2009, BIOCHEM PHARMACOL, V78, P539, DOI 10.1016/j.bcp.2009.04.029
  73. Stone JP, 2016, KIDNEY INT REP, V1, P230, DOI 10.1016/j.ekir.2016.07.009
  74. Syversen SW, 2021, JAMA-J AM MED ASSOC, V326, P2375, DOI 10.1001/jama.2021.21316
  75. Taniguchi M, 2013, AM J TRANSPLANT, V13, P2577, DOI 10.1111/ajt.12395
  76. Tantry US, 2020, FUTUR CARDIOL, V16, P373, DOI 10.2217/fca-2019-0090
  77. Uchida S, 2015, CIRC RES, V116, P737, DOI 10.1161/CIRCRESAHA.116.302521
  78. Venner JM, 2015, AM J TRANSPLANT, V15, P1336, DOI 10.1111/ajt.13115
  79. Weigold F, 2018, ARTHRITIS RES THER, V20, DOI 10.1186/s13075-018-1545-8
  80. Wojtukiewicz MZ, 2015, CANCER METAST REV, V34, P775, DOI 10.1007/s10555-015-9599-4
  81. Yue XY, 2022, ANN RHEUM DIS, V81, P1281, DOI 10.1136/annrheumdis-2021-222088
  82. Zelová H, 2013, INFLAMM RES, V62, P641, DOI 10.1007/s00011-013-0633-0
  83. Zhao HF, 2023, FRONT IMMUNOL, V14, DOI 10.3389/fimmu.2023.1209464
  84. Zickler D, 2018, NEPHROL DIAL TRANSPL, V33, P574, DOI 10.1093/ndt/gfx316