Emergence of livestock-associated Mammaliicoccus sciuri ST71 co-harbouring mecA and mecC genes in Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
MOURA, Guilherme S. de
CARVALHO, Eneas de
SELLERA, Fabio P.
MARQUES, Michele F. S.
HEINEMANN, Marcos B.
VLIEGHER, Sarne De
SOUZA, Fernando N.
MOTA, Rinaldo A.
Citação
VETERINARY MICROBIOLOGY, v.283, article ID 109792, 6p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The discovery and tracking of antimicrobial resistance genes are essential for understanding the evolution of bacterial resistance and restraining its dispersion. Mammaliicoccus sciuri (formerly Staphylococcus sciuri) is the most probable evolutionary repository of the mecA gene, that later disseminated to S. aureus. In this study, we describe the first double mecA/mecC homologue-positive non-aureus staphylococci and mammaliicocci (NASM) from the American continent, also representing the first report of mecC-positive NASM in Brazil. Two clonally related methicillin-resistant M. sciuri strains co-carrying mecA and mecC genes were isolated from the teat skin swab and milk sample collected from an ewe's left udder half. Both M. sciuri strains belonged to the sequence type (ST) 71. Besides mecA and mecC genes, the M. sciuri strains carried broad resistomes for clinically important antimicrobial agents, including & beta;-lactams, tetracyclines, lincosamide, streptogramin, streptomycin, and aminoglycosides. Virulome analysis showed the presence of the clumping factor B (clfB), ATP-dependent protease ClpP (ClpP) and serine-aspartate repeat proteins (sdrC and sdrE) virulence-associated genes. Phylogenomic analysis revealed that these M. sciuri strains are part of a globally disseminated branch, associated with farm and companion animals and even with food. Our findings suggest that M. sciuri is likely to emerge as a pathogen of global interest, carrying a broad repertoire of antimicrobial resistance genes with a remarkable co-presence of mecA and mecC genes. Finally, we strongly encourage to monitor M. sciuri under the One Health umbrella since this bacterial species is spreading at the human-animal-environment interface.
Palavras-chave
Non-aureus staphylococci, Mammaliicocus sciuri, Antimicrobial resistance, Methicillin resistance, Whole-genome sequencing
Referências
  1. Bankevich A, 2012, J COMPUT BIOL, V19, P455, DOI 10.1089/cmb.2012.0021
  2. Bolger AM, 2014, BIOINFORMATICS, V30, P2114, DOI 10.1093/bioinformatics/btu170
  3. Bortolaia V, 2020, J ANTIMICROB CHEMOTH, V75, P3491, DOI 10.1093/jac/dkaa345
  4. Carattoli A, 2014, ANTIMICROB AGENTS CH, V58, P3895, DOI 10.1128/AAC.02412-14
  5. Castanheira M, 2010, J ANTIMICROB CHEMOTH, V65, P1353, DOI 10.1093/jac/dkq094
  6. Chen LH, 2005, NUCLEIC ACIDS RES, V33, pD325, DOI 10.1093/nar/gki008
  7. Christo-Foroux E, 2017, SYST APPL MICROBIOL, V40, P401, DOI 10.1016/j.syapm.2017.07.002
  8. CLSI, 2023, PERFORMANCE STANDARD
  9. Coil D, 2015, BIOINFORMATICS, V31, P587, DOI 10.1093/bioinformatics/btu661
  10. Cui C, 2021, JAC-ANTIMICROB RESIS, V3, DOI 10.1093/jacamr/dlaa125
  11. Foster TJ, 2019, TRENDS MICROBIOL, V27, P927, DOI 10.1016/j.tim.2019.06.007
  12. Garcia-Alvarez L, 2011, LANCET INFECT DIS, V11, P595, DOI 10.1016/S1473-3099(11)70126-8
  13. Gardner SN, 2015, BIOINFORMATICS, V31, P2877, DOI 10.1093/bioinformatics/btv271
  14. Gomez-Sanz E, 2021, MSYSTEMS, V6, DOI 10.1128/mSystems.00511-21
  15. Harrison EM, 2014, J ANTIMICROB CHEMOTH, V69, P911, DOI 10.1093/jac/dkt452
  16. Kaya H, 2018, MSPHERE, V3, DOI 10.1128/mSphere.00612-17
  17. Kosugi S, 2015, BIOINFORMATICS, V31, P3733, DOI 10.1093/bioinformatics/btv465
  18. Lakhundi S, 2018, CLIN MICROBIOL REV, V31, DOI [10.1128/CMR.00020-18, 10.1128/cmr.00020-18]
  19. Larsen MV, 2012, J CLIN MICROBIOL, V50, P1355, DOI 10.1128/JCM.06094-11
  20. Liu Q, 2017, FRONT CELL INFECT MI, V7, DOI 10.3389/fcimb.2017.00181
  21. Loncaric I, 2019, VET MICROBIOL, V230, P138, DOI 10.1016/j.vetmic.2019.02.014
  22. Moura GS, 2018, J DAIRY SCI, V101, P7804, DOI 10.3168/jds.2017-13361
  23. Muller A., 2018, INT J MED MUSHROOMS
  24. Nemeghaire S, 2014, VET MICROBIOL, V171, P342, DOI 10.1016/j.vetmic.2014.02.005
  25. Paterson GK, 2020, INFECT GENET EVOL, V79, DOI 10.1016/j.meegid.2019.104148
  26. Peng Y, 2012, BIOINFORMATICS, V28, P1420, DOI 10.1093/bioinformatics/bts174
  27. Prenafeta A, 2014, J DAIRY SCI, V97, P4838, DOI 10.3168/jds.2014-7986
  28. Price MN, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009490
  29. Pritchard L, 2016, ANAL METHODS-UK, V8, P12, DOI [10.1039/c5ay02550h, 10.1039/C5AY02550H]
  30. PROJAN SJ, 1988, NUCLEIC ACIDS RES, V16, P2179, DOI 10.1093/nar/16.5.2179
  31. Reydams H, 2022, J DAIRY SCI, V105, P9995, DOI 10.3168/jds.2022-22216
  32. Schauer B, 2021, VET MICROBIOL, V254, DOI 10.1016/j.vetmic.2021.109005
  33. Seemann T, 2014, BIOINFORMATICS, V30, P2068, DOI 10.1093/bioinformatics/btu153
  34. Shore AC, 2011, ANTIMICROB AGENTS CH, V55, P3765, DOI 10.1128/AAC.00187-11
  35. Stegemann MR, 2006, ANTIMICROB AGENTS CH, V50, P2286, DOI 10.1128/AAC.00077-06
  36. Sullivan MJ, 2011, BIOINFORMATICS, V27, P1009, DOI 10.1093/bioinformatics/btr039