New Technologies to Treat Obesity and Related Comorbidities

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
bookPart
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER INTERNATIONAL PUBLISHING
Autores
NETO, M. G.
Citação
Brunaldi, V. O.; Neto, M. G.. New Technologies to Treat Obesity and Related Comorbidities. In: . The SAGES Manual Operating through the Endoscope, Second Edition: SPRINGER INTERNATIONAL PUBLISHING, 2023. p.813-828.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The escalating obesity pandemic has recently gained an appropriate neologism: globesity. Despite the accompanying growth of bariatric surgery worldwide, the number of patients with an indication for surgery still markedly outpaces the healthcare system’s capacity to offer treatment. Therefore, new technologies and novel alternatives are needed to help in addressing this global crisis. This chapter aims to review newly developed devices and procedures to treat excess weight and metabolic diseases, primarily type 2 diabetes. © SAGES 2023.
Palavras-chave
Bariatric, Duodenal liner, Duodenal mucosal resurfacing, Endoscopy, Intragastric balloon, Jejunal diversion, Obesity, Overweight, Type 2 diabetes, Weight loss
Referências
  1. Hales C.M., Carroll M.D., Fryar C.D., Ogden C.L., Prevalence of obe-sity among adults and youth: United States, 2015–2016, NCHS Data Brief, pp. 1-8, (2017)
  2. Hales C.M., Fryar C.D., Carroll M.D., Freedman D.S., Ogden C.L., Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007-2008 to 2015-2016, JAMA, 319, pp. 1723-1725, (2018)
  3. Organization W.H., Overweight and Obesity -Global Observatory Data, (2016)
  4. Yoon P.W., Bastian B., Anderson R.N., Collins J.L., Jaffe H.W., Potentially preventable deaths from the five leading causes of death--United States, 2008–2010. MMWR Morb Mortal Wkly Rep, 63, pp. 369-374, (2014)
  5. Tamara A., Tahapary D.L., Obesity as a predictor for a poor prog-nosis of COVID-19: A systematic review, Diabetes Metab Syndr, 14, pp. 655-659, (2020)
  6. Sjostrom L., Narbro K., Sjostrom C.D., Et al., Effects of bariatric surgery on mortality in Swedish obese subjects, N Engl J Med, 357, pp. 741-752, (2007)
  7. Carlsson L.M.S., Sjoholm K., Jacobson P., Andersson-Assarsson J.C., Svensson P.-A., Taube M., Carlsson B., Peltonen M., Life expec-tancy after bariatric surgery in the Swedish obese subjects study, N Engl J Med, 383, pp. 1535-1543, (2020)
  8. Carlsson L.M.S., Peltonen M., Ahlin S., Et al., Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects, N Engl J Med, 367, pp. 695-704, (2012)
  9. Angrisani L., Santonicola A., Iovino P., Vitiello A., Higa K., Himpens J., Buchwald H., Scopinaro N., IFSO worldwide survey 2016: Primary, Endoluminal, and Revisional procedures, Obes Surg, 28, (2018)
  10. Wharton S., Serodio K.J., Kuk J.L., Sivapalan N., Craik A., Aarts M.-A., Interest, views and perceived barriers to bariatric surgery in patients with morbid Obesityobesity, Clin Obes, 6, pp. 154-160, (2016)
  11. Brunaldi V.O., Galvao Neto M., Endoscopic techniques for weight loss and treating metabolic syndrome, Curr Opin Gastroenterol, 35, pp. 424-431, (2019)
  12. Rubio-Almanza M., Camara-Gomez R., Merino-Torres J.F., Obesity and type 2 diabetes: Also linked in therapeutic options, Endocrinol diabetes y Nutr, 66, pp. 140-149, (2019)
  13. Leitner D.R., Fruhbeck G., Yumuk V., Schindler K., Micic D., Woodward E., Toplak H., Obesity and type 2 diabetes: Two dis-eases with a need for combined treatment strategies -EASO can Lead the way, Obes Facts, 10, pp. 483-492, (2017)
  14. Buchwald H., Estok R., Fahrbach K., Banel D., Jensen M.D., Pories W.J., Bantle J.P., Sledge I., Weight and type 2 diabetes after bar-iatric surgery: Systematic review and meta-analysis, Am J Med, 122, pp. 248-256, (2009)
  15. Kindel T.L., Yoder S.M., Seeley R.J., Alessio D.A.D., Tso P., Duodenal-Jejunal Exclusion improves glucose tolerance in the diabetic, Goto-Kakizaki Rat by a GLP-1 receptor-mediated mechanism ligament of treitz, J Gastrointestinal Surg, 13, 10, pp. 1762-1772, (2009)
  16. de Jonge C., Rensen S.S., Verdam F.J., Vincent R.P., Bloom S.R., Buurman W.A., le Roux C.W., Schaper N.C., Bouvy N.D., Greve J.W.M., Endoscopic duodenal-jejunal bypass liner rapidly improves type 2 diabetes, Obes Surg, 23, pp. 1354-1360, (2013)
  17. de Moura E.G.H., Ponte-Neto A.M., Tsakmaki A., Aiello V.D., Bewick G.A., Brunaldi V.O., Histologic assessment of the intes-tinal wall following duodenal mucosal resurfacing (DMR): A new procedure for the treatment of insulin-resistant metabolic disease, Endosc Int open, 7, pp. E685-E690, (2019)
  18. Haidry R.J., van Baar A.C., Galvao Neto M.P., Rajagopalan H., Caplan J., Levin P.S., Bergman J.J., Rodriguez L., Deviere J., Thompson C.C., Duodenal mucosal resurfacing: Proof-of-concept, procedural development, and initial implementation in the clini-cal setting, Gastrointest Endosc, 90, pp. 673-681, (2019)
  19. Rajagopalan H., Cherrington A.D., Thompson C.C., Et al., Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes: 6-month interim analysis from the first-in-human proof-of-concept study, Diabetes Care, 39, pp. 2254-2261, (2016)
  20. van Baar A.C.G., Holleman F., Crenier L., Et al., Endoscopic duo-denal mucosal resurfacing for the treatment of type 2 diabetes mellitus: One year results from the first international, open-label, prospective, multicentre study, Gut, 69, pp. 295-303, (2020)
  21. van Baar A.C.G., Meiring S., Smeele P., Et al., Duodenal mucosal resurfacing combined with GLP-1RA to discontinue insulin in type 2 diabetes: A feasibility study, Gastrointest Endosc, 94, (2021)
  22. Equen M., Roach G., Brown R., Bennett T., Magnetic removal of foreign bodies from the esophagus, stomach and duodenum, AMA Arch Otolaryngol, 66, pp. 698-706, (1957)
  23. Cope C., Creation of compression gastroenterostomy by means of the oral, percutaneous, or surgical introduction of magnets: Feasibility study in swine, J Vasc Interv Radiol, 6, pp. 539-545, (1995)
  24. Chopita N., Vaillaverde A., Cope C., Bernedo A., Martinez H., Landoni N., Jmelnitzky A., Burgos H., Endoscopic gastroenteric anastomosis using magnets, Endoscopy, 37, pp. 313-317, (2005)
  25. Jamshidi R., Stephenson J.T., Clay J.G., Pichakron K.O., Harrison M.R., Magnamosis: Magnetic compression anastomosis with comparison to suture and staple techniques, J Pediatr Surg, 44, pp. 222-228, (2009)
  26. Myers C., Yellen B., Evans J., DeMaria E., Pryor A., Using exter-nal magnet guidance and endoscopically placed magnets to create suture-free gastro-enteral anastomoses, Surg Endosc, 24, pp. 1104-1109, (2010)
  27. Ryou M., Agoston A.T., Thompson C.C., Endoscopic intestinal bypass creation by using self-assembling magnets in a porcine model, Gastrointest Endosc, 83, pp. 821-825, (2016)
  28. Ryou M., Aihara H., Thompson C.C., Minimally invasive entero-enteral dual-path bypass using self-assembling magnets, Surg Endosc, 30, pp. 4533-4538, (2016)
  29. Machytka E., Buzga M., Zonca P., Lautz D.B., Ryou M., Simonson D.C., Thompson C.C., Partial jejunal diversion using an incision-less magnetic anastomosis system: 1-year interim results in patients with obesityobesity and diabetes, Gastrointest Endosc, 86, pp. 904-912, (2017)
  30. Camilleri M., Peripheral mechanisms in appetite regulation, Gastroenterology, 148, pp. 1219-1233, (2015)
  31. Goitein D., Lederfein D., Tzioni R., Berkenstadt H., Venturero M., Rubin M., Mapping of ghrelin gene expression and cell dis-tribution in the stomach of morbidly obese patients--a possible guide for efficient sleeve gastrectomy construction, Obes Surg, 22, pp. 617-622, (2012)
  32. Murphy K.G., Bloom S.R., Gut hormones and the regulation of energy homeostasis, Nature, 444, pp. 854-859, (2006)
  33. Park J.-H., Bakheet N., Na H.K., Jeon J.Y., Yoon S.H., Kim K.Y., Zhe W., Kim D.H., Jung H.-Y., Song H.-Y., A novel full sense device to treat obesity in a porcine model: Preliminary results, Obes Surg, 29, pp. 1521-1527, (2019)
  34. Luo Y., Zhang X., Tsauo J., Jung H.-Y., Song H.-Y., Zhao H., Li J., Gong T., Song P., Li X., Intragastric satiety-inducing device reduces food intake and suppresses body weight gain in a rodent model, Surg Endosc, 35, (2020)
  35. Bakheet N., Na H.K., Park J.-H., Et al., A novel Intragastric satiety-inducing device to inhibit weight gain in juvenile pigs: A pilot study, Obes Surg, 30, pp. 4643-4651, (2020)
  36. Casella-Mariolo J., Castagneto-Gissey L., Angelini G., Et al., Simulation of gastric bypass effects on glucose metabolism and non-alcoholic fatty liver disease with the Sleeveballoon device, EBioMedicine, 46, pp. 452-462, (2019)
  37. Oberbach A., Schlichting N., Heinrich M., Kullnick Y., Retschlag U., Lehmann S., Khashab M.A., Kalloo A.N., Kumbhari V., Gastric mucosal devitalization reduces adiposity and improves lipid and glucose metabolism in obese rats, Gastrointest Endosc, 87, pp. 288-299, (2018)
  38. Oberbach A., Schlichting N., Kullnick Y., Et al., Gastric mucosal devitalization improves blood pressure, renin and cardiovascu-lar lipid deposition in a rat model of obesity, Endosc Int open, 7, pp. E1605-E1615, (2019)