Synaptic proteasome is inhibited in Alzheimer's disease models and associates with memory impairment in mice

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
RIBEIRO, Felipe C.
COZACHENCO, Danielle
HEIMFARTH, Luana
FORTUNA, Juliana T. S.
FREITAS, Guilherme B. de
SOUSA, Jorge M. de
ALVES-LEON, Soniza V.
Citação
COMMUNICATIONS BIOLOGY, v.6, n.1, article ID 1127, 12p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The proteasome plays key roles in synaptic plasticity and memory by regulating protein turnover, quality control, and elimination of oxidized/misfolded proteins. Here, we investigate proteasome function and localization at synapses in Alzheimer's disease (AD) post-mortem brain tissue and in experimental models. We found a marked increase in ubiquitinylated proteins in post-mortem AD hippocampi compared to controls. Using several experimental models, we show that amyloid-beta oligomers (A beta Os) inhibit synaptic proteasome activity and trigger a reduction in synaptic proteasome content. We further show proteasome inhibition specifically in hippocampal synaptic fractions derived from APPswePS1 Delta E9 mice. Reduced synaptic proteasome activity instigated by A beta Os is corrected by treatment with rolipram, a phosphodiesterase-4 inhibitor, in mice. Results further show that dynein inhibition blocks A beta O-induced reduction in dendritic proteasome content in hippocampal neurons. Finally, proteasome inhibition induces AD-like pathological features, including reactive oxygen species and dendritic spine loss in hippocampal neurons, inhibition of hippocampal mRNA translation, and memory impairment in mice. Results suggest that proteasome inhibition may contribute to synaptic and memory deficits in AD. A study involving several research models suggests that the function and synaptic localization of proteasomes, intracellular machineries involved in protein degradation, are impaired in the brains affected by Alzheimer's disease.
Palavras-chave
Referências
  1. Almeida CG, 2006, J NEUROSCI, V26, P4277, DOI 10.1523/JNEUROSCI.5078-05.2006
  2. Artinian J, 2008, EUR J NEUROSCI, V27, P3009, DOI 10.1111/j.1460-9568.2008.06262.x
  3. Ayloo S, 2017, MOL BIOL CELL, V28, P2543, DOI 10.1091/mbc.E17-01-0068
  4. Baleriola J, 2014, CELL, V158, P1159, DOI 10.1016/j.cell.2014.07.001
  5. Bingol B, 2010, CELL, V140, P567, DOI 10.1016/j.cell.2010.01.024
  6. Bingol B, 2006, NATURE, V441, P1144, DOI 10.1038/nature04769
  7. Bjorklund NL, 2012, MOL NEURODEGENER, V7, DOI 10.1186/1750-1326-7-23
  8. Bomfim TR, 2012, J CLIN INVEST, V122, P1339, DOI 10.1172/JCI57256
  9. Brito-Moreira J, 2017, J BIOL CHEM, V292, P7327, DOI 10.1074/jbc.M116.761189
  10. Chocron ES, 2022, SCI ADV, V8, DOI 10.1126/sciadv.abk2252
  11. Cozachenco D, 2023, AGEING RES REV, V85, DOI 10.1016/j.arr.2023.101862
  12. Cristofani R, 2017, AUTOPHAGY, V13, P1280, DOI 10.1080/15548627.2017.1308985
  13. De Felice FG, 2007, J BIOL CHEM, V282, P11590, DOI 10.1074/jbc.M607483200
  14. Decker H, 2010, J NEUROSCI, V30, P9166, DOI 10.1523/JNEUROSCI.1074-10.2010
  15. Ding M, 2008, BIOESSAYS, V30, P1075, DOI 10.1002/bies.20843
  16. Djakovic SN, 2009, J BIOL CHEM, V284, P26655, DOI 10.1074/jbc.M109.021956
  17. Dong CG, 2008, LEARN MEMORY, V15, P335, DOI 10.1101/lm.984508
  18. Duran-Aniotz C, 2023, MOL THER, V31, P2240, DOI 10.1016/j.ymthe.2023.03.028
  19. Duran-Aniotz C, 2017, ACTA NEUROPATHOL, V134, P489, DOI 10.1007/s00401-017-1694-x
  20. Ehlers MD, 2003, NAT NEUROSCI, V6, P231, DOI 10.1038/nn1013
  21. Elder MK, 2021, COMMUN BIOL, V4, DOI 10.1038/s42003-021-02324-6
  22. Ferreira ST, 2015, FRONT CELL NEUROSCI, V9, DOI 10.3389/fncel.2015.00191
  23. Figueiredo CP, 2013, J NEUROSCI, V33, P9626, DOI 10.1523/JNEUROSCI.0482-13.2013
  24. Gantois I, 2017, NAT MED, V23, P674, DOI 10.1038/nm.4335
  25. Gregori L, 1997, J BIOL CHEM, V272, P58
  26. Grinberg Lea Tenenholz, 2007, Cell and Tissue Banking, V8, P151, DOI 10.1007/s10561-006-9022-z
  27. Hamilton AM, 2012, NEURON, V74, P1023, DOI 10.1016/j.neuron.2012.04.031
  28. He Hai-Yan, 2023, Proc Natl Acad Sci U S A, V120, pe2216537120, DOI 10.1073/pnas.2216537120
  29. Hsu MT, 2015, DEV CELL, V35, P418, DOI 10.1016/j.devcel.2015.10.018
  30. Jankowsky JL, 2001, BIOMOL ENG, V17, P157, DOI 10.1016/S1389-0344(01)00067-3
  31. Keck S, 2003, J NEUROCHEM, V85, P115, DOI 10.1046/j.1471-4159.2003.01642.x
  32. Keller JN, 2000, J NEUROCHEM, V75, P436, DOI 10.1046/j.1471-4159.2000.0750436.x
  33. Lacor PN, 2007, J NEUROSCI, V27, P796, DOI 10.1523/JNEUROSCI.3501-06.2007
  34. Lee SH, 2008, SCIENCE, V319, P1253, DOI 10.1126/science.1150541
  35. Lepeta K, 2016, J NEUROCHEM, V138, P785, DOI 10.1111/jnc.13713
  36. Lokireddy S, 2015, P NATL ACAD SCI USA, V112, pE7176, DOI 10.1073/pnas.1522332112
  37. Lopez-Salon M, 2001, EUR J NEUROSCI, V14, P1820, DOI 10.1046/j.0953-816x.2001.01806.x
  38. Lourenco MV, 2022, FRONT CELL NEUROSCI, V16, DOI 10.3389/fncel.2022.953991
  39. Lourenco MV, 2019, NAT MED, V25, P165, DOI 10.1038/s41591-018-0275-4
  40. Lourenco MV, 2015, PROG NEUROBIOL, V129, P37, DOI 10.1016/j.pneurobio.2015.03.003
  41. Lourenco MV, 2013, CELL METAB, V18, P831, DOI 10.1016/j.cmet.2013.11.002
  42. Ma T, 2013, NAT NEUROSCI, V16, P1299, DOI 10.1038/nn.3486
  43. Madeira C, 2015, TRANSL PSYCHIAT, V5, DOI 10.1038/tp.2015.52
  44. Martínez G, 2018, TRENDS NEUROSCI, V41, P610, DOI 10.1016/j.tins.2018.05.009
  45. Masters CL, 2015, NAT REV DIS PRIMERS, V1, DOI 10.1038/nrdp.2015.56
  46. Mendes ND, 2018, J NEUROSCI METH, V307, P203, DOI 10.1016/j.jneumeth.2018.05.021
  47. Murata S, 2009, NAT REV MOL CELL BIO, V10, P104, DOI 10.1038/nrm2630
  48. Myeku N, 2016, NAT MED, V22, P46, DOI 10.1038/nm.4011
  49. Oliveira MM, 2021, SCI SIGNAL, V14, DOI 10.1126/scisignal.abc5429
  50. Ramachandran KV, 2017, NAT STRUCT MOL BIOL, V24, P419, DOI 10.1038/nsmb.3389
  51. Ramser EM, 2013, MOL BIOL CELL, V24, P2494, DOI 10.1091/mbc.E12-12-0858
  52. Renner M, 2010, NEURON, V66, P739, DOI 10.1016/j.neuron.2010.04.029
  53. Romero-Granados R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028927
  54. Roselli F, 2005, J NEUROSCI, V25, P11061, DOI 10.1523/JNEUROSCI.3034-05.2005
  55. Saraiva LM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015230
  56. Schaler AW, 2021, SCI TRANSL MED, V13, DOI 10.1126/scitranslmed.aba7394
  57. Schindelin J, 2012, NAT METHODS, V9, P676, DOI [10.1038/nmeth.2019, 10.1038/NMETH.2019]
  58. Schmidt EK, 2009, NAT METHODS, V6, P275, DOI [10.1038/nmeth.1314, 10.1038/NMETH.1314]
  59. Sebollela A, 2012, J BIOL CHEM, V287, P7436, DOI 10.1074/jbc.M111.298471
  60. Sun C, 2023, SCIENCE, V380, P811, DOI 10.1126/science.adf2018
  61. Tai HC, 2012, AM J PATHOL, V181, P1426, DOI 10.1016/j.ajpath.2012.06.033
  62. Tammineni P, 2017, ELIFE, V6, DOI 10.7554/eLife.21776
  63. Thibaudeau TA, 2019, PHARMACOL REV, V71, P170, DOI 10.1124/pr.117.015370
  64. Thibaudeau TA, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03509-0
  65. Um JW, 2012, NAT NEUROSCI, V15, P1227, DOI 10.1038/nn.3178
  66. VerPlank JJS, 2019, P NATL ACAD SCI USA, V116, P4228, DOI 10.1073/pnas.1809254116
  67. VerPlank JJS, 2017, BIOCHEM J, V474, P3355, DOI 10.1042/BCJ20160809
  68. Viola KL, 2015, ACTA NEUROPATHOL, V129, P183, DOI 10.1007/s00401-015-1386-3
  69. Vitolo OV, 2002, P NATL ACAD SCI USA, V99, P13217, DOI 10.1073/pnas.172504199
  70. Zhao XB, 2010, ACS CHEM NEUROSCI, V1, P655, DOI 10.1021/cn100067e