Effects of Lactate Transport Inhibition by AZD3965 in Muscle-Invasive Urothelial Bladder Cancer

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
SILVA, Ana
FELIX, Ana
CERQUEIRA, Monica
GONCALVES, Celine S.
SAMPAIO-MARQUES, Belem
BALTAZAR, Fatima
AFONSO, Julieta
Citação
PHARMACEUTICS, v.15, n.12, article ID 2688, 21p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The Warburg Effect is characterized by high rates of glucose uptake and lactate production. Monocarboxylate transporters (MCTs) are crucial to avoid cellular acidosis by internal lactate accumulation, being largely overexpressed by cancer cells and associated with cancer aggressiveness. The MCT1-specific inhibitor AZD3965 has shown encouraging results in different cancer models. However, it has not been tested in urothelial bladder cancer (UBC), a neoplasm where rates of recurrence, progression and platinum-based resistance are generally elevated. We used two muscle-invasive UBC cell lines to study AZD3965 activity regarding lactate production, UBC cells' viability and proliferation, cell cycle profile, and migration and invasion properties. An ""in vivo"" assay with the chick chorioallantoic membrane model was additionally performed, as well as the combination of the compound with cisplatin. AZD3965 demonstrated anticancer activity upon low levels of MCT4, while a general lack of sensitivity was observed under MCT4 high expression. Cell viability, proliferation and migration were reduced, cell cycle was arrested, and tumor growth ""in vivo"" was inhibited. The compound sensitized these MCT4-low-expressing cells to cisplatin. Thus, AZD3965 seems to display anticancer properties in UBC under a low MCT4-expression setting, but additional studies are necessary to confirm AZD3965 activity in this cancer model.
Palavras-chave
urothelial bladder cancer, Warburg effect, lactate, monocarboxylate transporters, AZD3965
Referências
  1. Afonso J, 2023, CANCERS, V15, DOI 10.3390/cancers15030982
  2. Afonso J, 2020, NAT REV UROL, V17, P77, DOI 10.1038/s41585-019-0263-6
  3. Afonso J, 2019, CELL ONCOL, V42, P303, DOI 10.1007/s13402-019-00426-2
  4. Afonso J, 2016, CELL CYCLE, V15, P368, DOI 10.1080/15384101.2015.1121329
  5. Afonso J, 2015, MOL CARCINOGEN, V54, P1451, DOI 10.1002/mc.22222
  6. Ames S, 2020, ONCOGENE, V39, P1710, DOI 10.1038/s41388-019-1098-6
  7. Antoni S, 2017, EUR UROL, V71, P96, DOI 10.1016/j.eururo.2016.06.010
  8. Ascione CM, 2023, CANCER TREAT REV, V115, DOI 10.1016/j.ctrv.2023.102530
  9. Audisio A, 2022, CELLS-BASEL, V11, DOI 10.3390/cells11030357
  10. Babjuk M, 2022, EUR UROL, V81, P75, DOI 10.1016/j.eururo.2021.08.010
  11. Barbato A, 2023, CELL PROLIFERAT, V56, DOI 10.1111/cpr.13388
  12. Barone B, 2022, CANCERS, V14, DOI 10.3390/cancers14102545
  13. Bellmunt J., 2020, J. Clin. Oncol, V38, P5026, DOI [10.1200/JCO.2020.38.15_suppl.5026, DOI 10.1200/JCO.2020.38.15_SUPPL.5026]
  14. Beloueche-Babari M, 2020, BRIT J CANCER, V122, P895, DOI 10.1038/s41416-019-0717-x
  15. Beloueche-Babari M, 2017, CANCER RES, V77, P5913, DOI 10.1158/0008-5472.CAN-16-2686
  16. Benyahia Z, 2021, CANCERS, V13, DOI 10.3390/cancers13030569
  17. Bola BM, 2014, MOL CANCER THER, V13, P2805, DOI 10.1158/1535-7163.MCT-13-1091
  18. Boulares AH, 1999, J BIOL CHEM, V274, P22932, DOI 10.1074/jbc.274.33.22932
  19. Braga M, 2020, CANCERS, V12, DOI 10.3390/cancers12061703
  20. Byun JK, 2023, ARCH PHARM RES, V46, P90, DOI 10.1007/s12272-023-01431-8
  21. Curtis NJ, 2017, ONCOTARGET, V8, P69219, DOI 10.18632/oncotarget.18215
  22. Dalton KM, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2009620118
  23. Drayton RM, 2012, EXPERT REV ANTICANC, V12, P271, DOI [10.1586/era.11.201, 10.1586/ERA.11.201]
  24. Grasa L, 2023, J PHYSIOL BIOCHEM, V79, P147, DOI 10.1007/s13105-022-00931-3
  25. Guan XW, 2020, AAPS J, V22, DOI 10.1208/s12248-020-00466-9
  26. Halestrap AP, 2012, IUBMB LIFE, V64, P109, DOI 10.1002/iub.572
  27. Halford S, 2023, CLIN CANCER RES, V29, P1429, DOI 10.1158/1078-0432.CCR-22-2263
  28. Halford SER, 2021, J CLIN ONCOL, V39, DOI 10.1200/JCO.2021.39.15_suppl.3115
  29. Hong CS, 2016, CELL REP, V14, P1590, DOI 10.1016/j.celrep.2016.01.057
  30. Hu KY, 2016, ONCOL REP, V36, P945, DOI 10.3892/or.2016.4884
  31. Jiang D, 2021, NAT REV UROL, V18, P104, DOI 10.1038/s41585-020-00404-6
  32. Klatte T, 2009, CANCER-AM CANCER SOC, V115, P1448, DOI 10.1002/cncr.24163
  33. Kocianova E, 2022, CANCERS, V14, DOI 10.3390/cancers14246028
  34. Kong SC, 2016, PANCREAS, V45, P1036, DOI 10.1097/MPA.0000000000000571
  35. Li F., 2023, Res. Sq, DOI [10.21203/rs.3.rs-2993275/v1, DOI 10.21203/RS.3.RS-2993275/V1]
  36. Li FM, 2020, DEV CELL, V54, P183, DOI 10.1016/j.devcel.2020.06.018
  37. Liao CG, 2022, ONCOGENE, V41, P1780, DOI 10.1038/s41388-022-02213-0
  38. Michaelis M, 2011, CELL DEATH DIS, V2, DOI 10.1038/cddis.2011.129
  39. Michaelis M, 2019, CANCER DRUG RESIST, V2, P447, DOI 10.20517/cdr.2019.005
  40. Noble RA, 2017, HAEMATOLOGICA, V102, P1247, DOI 10.3324/haematol.2016.163030
  41. Oun R, 2018, DALTON T, V47, P6645, DOI 10.1039/c8dt00838h
  42. Pascale RM, 2020, CANCERS, V12, DOI 10.3390/cancers12102819
  43. Patel VG, 2020, CA-CANCER J CLIN, V70, P404, DOI 10.3322/caac.21631
  44. Payen VL, 2020, MOL METAB, V33, P48, DOI 10.1016/j.molmet.2019.07.006
  45. Payen VL, 2017, CANCER RES, V77, P5591, DOI 10.1158/0008-5472.CAN-17-0764
  46. Pivovarova AI, 2018, BIOMED PHARMACOTHER, V98, P173, DOI 10.1016/j.biopha.2017.12.048
  47. Polanski R, 2014, CLIN CANCER RES, V20, P926, DOI 10.1158/1078-0432.CCR-13-2270
  48. Quanz M, 2018, MOL CANCER THER, V17, P2285, DOI 10.1158/1535-7163.MCT-17-1253
  49. Ripoll J, 2021, BMC CANCER, V21, DOI 10.1186/s12885-021-08418-y
  50. Bouffioux C R, 1984, Prog Clin Biol Res, V162A, P11, DOI 10.3390/medsci8010015
  51. Sanli O, 2017, NAT REV DIS PRIMERS, V3, DOI 10.1038/nrdp.2017.22
  52. Saulle E, 2021, FRONT ONCOL, V10, DOI 10.3389/fonc.2020.621458
  53. Sheng GH, 2023, J ORTHOP SURG RES, V18, DOI 10.1186/s13018-023-03623-w
  54. Silva A, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24065141
  55. Silva A, 2022, MOLECULES, V27, DOI 10.3390/molecules27010181
  56. Singh M, 2023, SEMIN CANCER BIOL, V90, P1, DOI 10.1016/j.semcancer.2023.01.007
  57. Sung H, 2021, CA-CANCER J CLIN, V71, P209, DOI 10.3322/caac.21660
  58. Voigt H, 2009, CANCER INVEST, V27, P329, DOI 10.1080/07357900802392675
  59. Warburg O, 1927, J GEN PHYSIOL, V8, P519, DOI 10.1085/jgp.8.6.519
  60. Witjes JA, 2021, EUR UROL, V79, P82, DOI 10.1016/j.eururo.2020.03.055
  61. Wittekind C, 2005, ONCOLOGY-BASEL, V69, P14, DOI 10.1159/000086626
  62. Xiang AP, 2022, BMC UROL, V22, DOI 10.1186/s12894-022-01074-9
  63. Zhang GM, 2018, J CANCER, V9, P2492, DOI 10.7150/jca.25257