Antibiotic-loaded lipid-based nanocarrier: A promising strategy to overcome bacterial infection

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER B.V.
Autores
HENOSTROZA, M. A. Bazán
TAVARES, G. Diniz
YUKUYAMA, M. Nishitani
SOUZA, A. De
BARBOSA, E. José
AVINO, V. Carlos
LOURENçO, F. Rebello
LöBENBERG, R.
BOU-CHACRA, N. Araci
Citação
INTERNATIONAL JOURNAL OF PHARMACEUTICS, v.621, article ID 121782, p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
According to the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), bacterial infections are one of the greatest threats to global health, food production, and life expectancy. In this sense, the development of innovative formulations aiming at greater therapeutic efficacy, safety, and shorter treatment duration compared to conventional products is urgently needed. Lipid-based nanocarriers (LBNs) have demonstrated the potential to enhance the effectiveness of available antibiotics. Among them, liposome, nanoemulsion, solid lipid nanoparticle (SLN), and nanostructured lipid carrier (NLC) are the most promising due to their solid technical background for laboratory and industrial production. This review describes recent advances in developing antibiotic-loaded LBNs against susceptible and resistant bacterial strains and biofilm. LBNs revealed to be a promising alternative to deliver antibiotics due to their superior characteristics compared to conventional preparations, including their modified drug release, improved bioavailability, drug protection against chemical or enzymatic degradation, greater drug loading capacity, and biocompatibility. Antibiotic-loaded LBNs can improve current clinical drug therapy, bring innovative products and rescue discarded antibiotics. Thus, antibiotic-loaded LBNs have potential to open a window of opportunities to continue saving millions of lives and prevent the devastating impact of bacterial infection. © 2022 Elsevier B.V.
Palavras-chave
Bacterial infection, Biofilm, Lipid-based nanocarrier, Resistant strain, Susceptible strain
Referências
  1. Abdelaziz H.M., Gaber M., Abd-Elwakil M.M., Mabrouk M.T., Elgohary M.M., Kamel N.M., Kabary D.M., Freag M.S., Samaha M.W., Mortada S.M., Elkhodairy K.A., Fang J.-Y., Elzoghby A.O., Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates, J. Controll. Release, 269, pp. 374-392, (2018)
  2. Adhipandito C.F., Cheung S.-H., Lin Y.-H., Wu S.-H., Atypical Renal Clearance of Nanoparticles Larger Than the Kidney Filtration Threshold, Int. J. Mol. Sci., 22, (2021)
  3. Alalaiwe A., Wang P.-W., Lu P.-L., Chen Y.-P., Fang J.-Y., Yang S.-C., Synergistic Anti-MRSA Activity of Cationic Nanostructured Lipid Carriers in Combination With Oxacillin for Cutaneous Application, Front. Microbiol., 9, (2018)
  4. Alcantara K.P., Zulfakar M.H., Castillo A.L., Development, characterization and pharmacokinetics of mupirocin-loaded nanostructured lipid carriers (NLCs) for intravascular administration, Int. J. Pharm., 571, (2019)
  5. Alhariri M., Majrashi M.A., Bahkali A.H., Almajed F.S., Azghani A.O., Khiyami M., Alyamani E.J., Aljohani S.M., Halwani M.A., Efficacy of neutral and negatively charged liposome-loaded gentamicin on planktonic bacteria and biofilm communities, Int. J. Nanomed., 12, pp. 6949-6961, (2017)
  6. Aljihani S.A., Alehaideb Z., Alarfaj R.E., Alghoribi M.F., Akiel M.A., Alenazi T.H., Al-Fahad A.J., Al Tamimi S.M., Albakr T.M., Alshehri A., Alyahya S.M., Yassin A.E.B., Halwani M.A., Enhancing azithromycin antibacterial activity by encapsulation in liposomes/liposomal-N-acetylcysteine formulations against resistant clinical strains of Escherichia coli, Saudi J. Biol. Sci., 27, 11, pp. 3065-3071, (2020)
  7. Angst D.C., Tepekule B., Sun L., Bogos B., Bonhoeffer S., Comparing treatment strategies to reduce antibiotic resistance in an in vitro epidemiological setting, Proc. Natl. Acad. Sci., 118, (2021)
  8. Arana L., Gallego L., Alkorta I., Incorporation of Antibiotics into Solid Lipid Nanoparticles: A Promising Approach to Reduce Antibiotic Resistance Emergence, Nanomaterials, 11, (2021)
  9. Archer N.K., Mazaitis M.J., Costerton J.W., Leid J.G., Powers M.E., Shirtliff M.E., Staphylococcus aureus biofilms : Properties, regulation, and roles in human disease, Staphylococcus aureus biofilms, Virulence, 2, 5, pp. 445-459, (2011)
  10. Avedissian S.N., Liu J., Rhodes N.J., Lee A., Pais G.M., Hauser A.R., Scheetz M.H., A Review of the Clinical Pharmacokinetics of Polymyxin B, Antibiotics, 8, (2019)
  11. Baig M.S., Ahad A., Aslam M., Imam S.S., Aqil M., Ali A., Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity, Int. J. Biol. Macromol., 85, pp. 258-270, (2016)
  12. Ferreira M., Pinto S.N., Aires-da-Silva F., Bettencourt A., Aguiar S.I., Gaspar M.M., Liposomes as a Nanoplatform to Improve the Delivery of Antibiotics into Staphylococcus aureus Biofilms, Pharmaceutics, 13, (2021)
  13. Ganesan P., Narayanasamy D., Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery, Sustainable Chem. Pharm., 6, pp. 37-56, (2017)
  14. Gao Y., Chen Y., Cao Y., Mo A., Peng Q., Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus, Eur. J. Med. Chem., 213, (2021)
  15. Garces A., Amaral M.H., Sousa Lobo J.M., Silva A.C., Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review, Eur. J. Pharm. Sci., 112, pp. 159-167, (2018)
  16. Gaspar D.P., Gaspar M.M., Eleuterio C.V., Grenha A., Blanco M., Goncalves L.M.D., Taboada P., Almeida A.J., Remunan-Lopez C., Microencapsulated Solid Lipid Nanoparticles as a Hybrid Platform for Pulmonary Antibiotic Delivery, Mol. Pharm., 14, 9, pp. 2977-2990, (2017)
  17. (2021)
  18. Gogry F.A., Siddiqui M.T., Sultan I., Haq Q., Mohd R., Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria, Frontiers in Medicine, 8, (2021)
  19. Goke K., Bunjes H., Drug solubility in lipid nanocarriers: Influence of lipid matrix and available interfacial area, Int. J. Pharm., 529, pp. 617-628, (2017)
  20. Goldmann O., Cern A., Musken M., Rohde M., Weiss W., Barenholz Y., Medina E., Liposomal mupirocin holds promise for systemic treatment of invasive Staphylococcus aureus infections, J. Control. Release, 316, pp. 292-301, (2019)
  21. Gong H., Geng S., Zheng Q., Wang P., Luo L., Wang X., Zhang Y., Zhang Y.U., He H., Tang X., An intravenous clarithromycin lipid emulsion with a high drug loading, H-bonding and a hydrogen-bonded ion pair complex exhibiting excellent antibacterial activity, Asian J. Pharm. Sci., 11, pp. 618-630, (2016)
  22. Mi G., Shi D., Wang M., Webster T.J., Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces, Adv. Healthcare Mater., 7, (2018)
  23. Gonzalez Gomez A., Hosseinidoust Z., Liposomes for Antibiotic Encapsulation and Delivery, ACS Infect. Dis., 6, pp. 896-908, (2020)
  24. Gupta A., Mumtaz S., Li C.-H., Hussain I., Rotello V.M., Combatting antibiotic-resistant bacteria using nanomaterials, Chem. Soc. Rev., 48, pp. 415-427, (2019)
  25. Hajiahmadi F., Alikhani M.Y., Shariatifar H., Arabestani M.R., Ahmadvand D., The bactericidal effect of lysostaphin coupled with liposomal vancomycin as a dual combating system applied directly on methicillin-resistant Staphylococcus aureus infected skin wounds in mice, Int. J. Nanomed., 14, pp. 5943-5955, (2019)
  26. Halder S., Yadav K.K., Sarkar R., Mukherjee S., Saha P., Haldar S., Karmakar S., Sen T., Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents, Springerplus, 4, (2015)
  27. Halicki P.C.B., Hadrich G., Boschero R., Ferreira L.A., von Groll A., da Silva P.E.A., Dora C.L., Ramos D.F., Alternative Pharmaceutical Formulation for Oral Administration of Rifampicin, Assay Drug Dev. Technol., 16, pp. 456-461, (2018)
  28. Han Y., Sun Z., Chen W., Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes, Molecules, 25, (2019)
  29. Harshita B., Md A., Das S.S., Pottoo F.H., Beg S., Rahman Z., Lipid-Based Nanosystem As Intelligent Carriers for Versatile Drug Delivery Applications, Curr. Pharm. Des., 26, pp. 1167-1180, (2020)
  30. Hayden S.C., Zhao G., Saha K., Phillips R.L., Li X., Miranda O.R., Rotello V.M., El-Sayed M.A., Schmidt-Krey I., Bunz U.H.F., Aggregation and Interaction of Cationic Nanoparticles on Bacterial Surfaces, J Am Chem Soc, 134, pp. 6920-6923, (2012)
  31. Hoffman P.S., Antibacterial Discovery: 21st Century Challenges, Antibiotics, 9, (2020)
  32. Hoiby N., Ciofu O., Bjarnsholt T., Pseudomonas aeruginosa biofilms in cystic fibrosis, Future Microbiology, 5, pp. 1663-1674, (2010)
  33. Mishra D.K., Shandilya R., Mishra P.K., Lipid based nanocarriers: a translational perspective. Nanomedicine: Nanotechnology, Biology and Medicine, 14, pp. 2023-2050, (2018)
  34. Hoy K.L., Solubility Parameter as a Design Parameter for Water Borne Polymers and Coatings, Journal of Coated Fabrics, 19, pp. 53-67, (1989)
  35. Hutchings M.I., Truman A.W., Wilkinson B., Antibiotics: past, present and future, Curr. Opin. Microbiol., 51, pp. 72-80, (2019)
  36. Ilko D., Braun A., Germershaus O., Meinel L., Holzgrabe U., Fatty acid composition analysis in polysorbate 80 with high performance liquid chromatography coupled to charged aerosol detection, Eur. J. Pharm. Biopharm., 94, pp. 569-574, (2015)
  37. Iqbal U., Khara H.S., Akhtar D., Hu Y., Anwar H., Haq K.F., Siddiqui H.U., Bergenstock M.K., Shellenberger M.J., Safety and Efficacy of Nitazoxanide-Based Regimen for the Eradication of Helicobacter pylori Infection: A Systematic Review and Meta-Analysis, Gastroenterology Research, 13, pp. 260-268, (2020)
  38. Jacopin E., Lehtinen S., Debarre F., Blanquart F., Factors favouring the evolution of multidrug resistance in bacteria, J. R. Soc. Interface, 17, (2020)
  39. Jamal M., Ahmad W., Andleeb S., Jalil F., Imran M., Nawaz M.A., Hussain T., Ali M., Rafiq M., Kamil M.A., Bacterial biofilm and associated infections, Journal of the Chinese Medical Association, 81, pp. 7-11, (2018)
  40. Janik E., Ceremuga M., Niemcewicz M., Bijak M., Dangerous Pathogens as a Potential Problem for Public Health, Medicina (B Aires), 56, (2020)
  41. Joshi A.S., Singh P., Mijakovic I., Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance, Int. J. Mol. Sci., 21, (2020)
  42. Kaddah S., Khreich N., Kaddah F., Charcosset C., Greige-Gerges H., Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule, Food Chem. Toxicol., 113, pp. 40-48, (2018)
  43. Kalhapure R.S., Mocktar C., Sikwal D.R., Sonawane S.J., Kathiravan M.K., Skelton A., Govender T., Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles, Colloids Surf., B, 117, pp. 303-311, (2014)
  44. Moormeier D.E., Bayles K.W., Staphylococcus aureus biofilm: a complex developmental organism, Mol. Microbiol., 104, pp. 365-376, (2017)
  45. Kalhapure R.S., Sikwal D.R., Rambharose S., Mocktar C., Singh S., Bester L., Oh J.K., Renukuntla J., Govender T., Enhancing targeted antibiotic therapy via pH responsive solid lipid nanoparticles from an acid cleavable lipid. Nanomedicine: Nanotechnology, Biology and Medicine, 13, pp. 2067-2077, (2017)
  46. Kanwar R., Rathee J., Salunke D.B., Mehta S.K., Green Nanotechnology-Driven Drug Delivery Assemblies, ACS Omega, 4, pp. 8804-8815, (2019)
  47. Karn-orachai K., Smith S.M., Phunpee S., Treethong A., Puttipipatkhachorn S., Pratontep S., Ruktanonchai U.R., The effect of surfactant composition on the chemical and structural properties of nanostructured lipid carriers, J. Microencapsul., 31, pp. 609-618, (2014)
  48. Katev V., Tsibranska-Gyoreva S., Vinarov Z., Tcholakova S., Supersaturation and Solubilization upon In Vitro Digestion of Fenofibrate Type I Lipid Formulations: Effect of Droplet Size, Surfactant Concentration and Lipid Type. Pharmaceutics, 13, (2021)
  49. Katev V., Vinarov Z., Tcholakova S., Mechanisms of drug solubilization by polar lipids in biorelevant media, Eur. J. Pharm. Sci., 159, (2021)
  50. Kirtane A.R., Verma M., Karandikar P., Furin J., Langer R., Traverso G., Nanotechnology approaches for global infectious diseases, Nat. Nanotechnol., 16, pp. 369-384, (2021)
  51. Kovach K., Davis-Fields M., Irie Y., Jain K., Doorwar S., Vuong K., Dhamani N., Mohanty K., Touhami A., Gordon V.D., Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production, npj Biofilms Microbiomes, 3, (2017)
  52. Kube S., Hersch N., Naumovska E., Gensch T., Hendriks J., Franzen A., Landvogt L., Siebrasse J.-P., Kubitscheck U., Hoffmann B., Merkel R., Csiszar A., Fusogenic Liposomes as Nanocarriers for the Delivery of Intracellular Proteins, Langmuir, 33, pp. 1051-1059, (2017)
  53. Kumar S., Bhanjana G., Kumar A., Taneja K., Dilbaghi N., Kim K.H., Synthesis and optimization of ceftriaxone-loaded solid lipid nanocarriers, Chem Phys Lipids, 200, pp. 126-132, (2016)
  54. Kuo S.-H., Shen C.-J., Shen C.-F., Cheng C.-M., Role of pH Value in Clinically Relevant Diagnosis, Diagnostics, 10, (2020)
  55. Morris S., Cerceo E., Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting, Antibiotics, 9, (2020)
  56. Lakhundi S., Zhang K., Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology, Clin. Microbiol. Rev., 31, (2018)
  57. Lambert P.A., Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria, J. Appl. Microbiol., 92, pp. 46S-54S, (2002)
  58. Lee Y.-C., Dalton C., Regler B., Harris D., Drug solubility in fatty acids as a formulation design approach for lipid-based formulations: a technical note, Drug Dev. Ind. Pharm., 44, pp. 1551-1556, (2018)
  59. Lewis K., The Science of Antibiotic Discovery, Cell, 181, pp. 29-45, (2020)
  60. Li Y., Su T., Zhang Y., Huang X., Li J., Li C., Liposomal co-delivery of daptomycin and clarithromycin at an optimized ratio for treatment of methicillin-resistant Staphylococcus aureus infection, Drug Delivery, 22, pp. 627-637, (2015)
  61. Liao C.-C., Yu H.-P., Yang S.-C., Alalaiwe A., Dai Y.-S., Liu F.-C., Fang J.-Y., Multifunctional lipid-based nanocarriers with antibacterial and anti-inflammatory activities for treating MRSA bacteremia in mice, Journal of Nanobiotechnology, 19, (2021)
  62. Lin Y.H., Chiou S.F., Lai C.H., Tsai S.C., Chou C.W., Peng S.F., He Z.S., Formulation and evaluation of water-in-oil amoxicillin-loaded nanoemulsions using for Helicobacter pylori eradication, Process Biochem., 47, pp. 1469-1478, (2012)
  63. Lister J.L., Horswill A.R., Staphylococcus aureus biofilms: recent developments in biofilm dispersal, Front. Cell. Infect. Microbiol., 4, (2014)
  64. Liu Q., Guan J., Qin L., Zhang X., Mao S., Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery, Drug Discovery Today, 25, pp. 150-159, (2020)
  65. Liu Y., Shi L., Su L., van der Mei H.C., Jutte P.C., Ren Y., Busscher H.J., Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control, Chem. Soc. Rev., 48, pp. 428-446, (2019)
  66. Nadimpalli M., Delarocque-Astagneau E., Love D.C., Price L.B., Huynh B.-T., Collard J.-M., Lay K.S., Borand L., Ndir A., Walsh T.R., Guillemot D., Borand L., de Lauzanne A., Kerleguer A., Tarantola A., Piola P., Chon T., Lach S., Ngo V., Touch S., Andrianirina Z.Z., Vray M., Richard V., Seck A., Bercion R., Sow A.G., Diouf J.B., Dieye P.S., Sy B., Ndao B., Seguy M., Watier L., Abdou A.Y., Combating Global Antibiotic Resistance: Emerging One Health Concerns in Lower- and Middle-Income Countries, Clin. Infect. Dis., 66, pp. 963-969, (2018)
  67. Ma Y., Wang Z., Khalil H., Wang R., Lu T., Zhao W., Zhang Y., Chen T., Chen J., Fusion between fluid liposomes and intact bacteria: study of driving parameters and in vitro bactericidal efficacy, Int. J. Nanomed., 11, pp. 4025-4036, (2016)
  68. MacParland S.A., Tsoi K.M., Ouyang B., Ma X.-Z., Manuel J., Fawaz A., Ostrowski M.A., Alman B.A., Zilman A., Chan W.C.W., McGilvray I.D., Phenotype Determines Nanoparticle Uptake by Human Macrophages from Liver and Blood, ACS Nano, 11, pp. 2428-2443, (2017)
  69. Makabenta J.M.V., Nabawy A., Li C.-H., Schmidt-Malan S., Patel R., Rotello V.M., Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections, Nat. Rev. Microbiol., 19, 1, pp. 23-36, (2021)
  70. Makhathini S.S., Kalhapure R.S., Jadhav M., Waddad A.Y., Gannimani R., Omolo C.A., Rambharose S., Mocktar C., Govender T., Novel two-chain fatty acid-based lipids for development of vancomycin pH-responsive liposomes against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), J. Drug Target., 27, pp. 1094-1107, (2019)
  71. Malaekeh-Nikouei B., Fazly Bazzaz B.S., Mirhadi E., Tajani A.S., Khameneh B., The role of nanotechnology in combating biofilm-based antibiotic resistance, J. Drug Delivery Sci. Technol., 60, (2020)
  72. Malik B., Bhattacharyya S., Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse, Sci. Rep., 9, (2019)
  73. Marques A.T., Vitor J.M.B., Santos A., Oleastro M., Vale F.F., Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches, Microb. Genomics, 6, (2020)
  74. Medina M., Castillo-Pino E., (2019)
  75. Mehanna M.M., Mneimneh A.T., Abed El Jalil K., Levofloxacin-loaded naturally occurring monoterpene-based nanoemulgel: a feasible efficient system to circumvent MRSA ocular infections, Drug Dev. Ind. Pharm., 46, pp. 1787-1799, (2020)
  76. Menkem Z.E., Ngangom B.L., Tamunjoh S.S.A., Boyom F.F., Antibiotic residues in food animals: Public health concern, Acta Ecologica Sinica, 39, pp. 411-415, (2019)
  77. Napper D.H., Steric stabilization, J. Colloid Interface Sci., 58, pp. 390-407, (1977)
  78. Mhango E.K.G., Kalhapure R.S., Jadhav M., Sonawane S.J., Mocktar C., Vepuri S., Soliman M., Govender T., Preparation and Optimization of Meropenem-Loaded Solid Lipid Nanoparticles. In Vitro Evaluation and Molecular Modeling, AAPS PharmSciTech, 18, pp. 2011-2025, (2017)
  79. Mhule D., Kalhapure R.S., Jadhav M., Omolo C.A., Rambharose S., Mocktar C., Singh S., Waddad A.Y., Ndesendo V.M.K., Govender T., Synthesis of an oleic acid based pH-responsive lipid and its application in nanodelivery of vancomycin, Int. J. Pharm., 550, pp. 149-159, (2018)
  80. Nelson R.E., Hatfield K.M., Wolford H., Samore M.H., Scott R.D., Reddy S.C., Olubajo B., Paul P., Jernigan J.A., Baggs J., National Estimates of Healthcare Costs Associated With Multidrug-Resistant Bacterial Infections Among Hospitalized Patients in the United States, Clin. Infect. Dis., 72, pp. S17-S26, (2021)
  81. Ohta S., Kikuchi E., Ishijima A., Azuma T., Sakuma I., Ito T., Investigating the optimum size of nanoparticles for their delivery into the brain assisted by focused ultrasound-induced blood–brain barrier opening, Sci. Rep., 10, (2020)
  82. Ong T.H., Chitra E., Ramamurthy S., Ling C.C.S., Ambu S.P., Davamani F., Shankar E.M., Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics, PLoS ONE, 14, 2, (2019)
  83. Pandit S., Roy S., Pillai J., Banerjee S., Formulation and Intracellular Trafficking of Lipid-Drug Conjugate Nanoparticles Containing a Hydrophilic Antitubercular Drug for Improved Intracellular Delivery to Human Macrophages, ACS Omega, 5, pp. 4433-4448, (2020)
  84. Baptista P.V., McCusker M.P., Carvalho A., Ferreira D.A., Mohan N.M., Martins M., Fernandes A.R., Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”, Front. Microbiol., 9, (2018)
  85. Papafilippou L., Claxton A., Dark P., Kostarelos K., Hadjidemetriou M., Nanotools for Sepsis Diagnosis and Treatment, Adv. Healthcare Mater., 10, (2021)
  86. Pasquina-Lemonche L., Burns J., Turner R.D., Kumar S., Tank R., Mullin N., Wilson J.S., Chakrabarti B., Bullough P.A., Foster S.J., Hobbs J.K., The architecture of the Gram-positive bacterial cell wall, Nature, 582, pp. 294-297, (2020)
  87. Pearson R.M., Hsu H., Bugno J., Hong S., Understanding nano-bio interactions to improve nanocarriers for drug delivery, MRS Bull., 39, pp. 227-237, (2014)
  88. Perry J.L., Reuter K.G., Luft J.C., Pecot C.V., Zamboni W., DeSimone J.M., Mediating Passive Tumor Accumulation through Particle Size, Tumor Type, and Location, Nano Lett., 17, 5, pp. 2879-2886, (2017)
  89. Peulen T.-O., Wilkinson K.J., Diffusion of Nanoparticles in a Biofilm, Environ. Sci. Technol., 45, pp. 3367-3373, (2011)
  90. Pignatello R., Leonardi A., Fuochi V., Petronio Petronio G., Greco A., Furneri P., A Method for Efficient Loading of Ciprofloxacin Hydrochloride in Cationic Solid Lipid Nanoparticles: Formulation and Microbiological Evaluation, Nanomaterials, 8, (2018)
  91. Pletz M.W., Hagel S., Forstner C., Who benefits from antimicrobial combination therapy?, Lancet. Infect. Dis, 17, pp. 677-678, (2017)
  92. Pucci C., Martinelli C., Ciofani G., What does the future hold for chemotherapy with the use of lipid-based nanocarriers?, Future Oncol., 16, pp. 81-84, (2020)
  93. Rawson T.M., Ming D., Ahmad R., Moore L.S.P., Holmes A.H., Antimicrobial use, drug-resistant infections and COVID-19, Nat. Rev. Microbiol., 18, pp. 409-410, (2020)
  94. Robino L., Scavone P., Nanotechnology in biofilm prevention, Future Microbiology, 15, pp. 377-379, (2020)
  95. Barar J., Bioimpacts of nanoparticle size: why it matters?, BioImpacts, 5, pp. 113-115, (2017)
  96. Rocha E.D., Ferreira M.R.S., dos Santos Neto E., Barbosa E.J., Lobenberg R., Lourenco F.R., Bou-Chacra N., Enhanced In Vitro Antimicrobial Activity of Polymyxin B-Coated Nanostructured Lipid Carrier Containing Dexamethasone Acetate, J. Pharm. Innov, 16, pp. 125-135, (2021)
  97. Rossitto M., Fiscarelli E.V., Rosati P., Challenges and Promises for Planning Future Clinical Research Into Bacteriophage Therapy Against Pseudomonas aeruginosa in Cystic Fibrosis. An Argumentative Review, Front. Microbiol., 9, (2018)
  98. Rukavina Z., Segvic Klaric M., Filipovic-Grcic J., Lovric J., Vanic Z., Azithromycin-loaded liposomes for enhanced topical treatment of methicillin-resistant Staphyloccocus aureus (MRSA) infections, Int. J. Pharm., 553, pp. 109-119, (2018)
  99. Sankaran J., Tan N.J.H.J., But K.P., Cohen Y., Rice S.A., Wohland T., Single microcolony diffusion analysis in Pseudomonas aeruginosa biofilms, npj Biofilms Microbiomes, 5, (2019)
  100. Scioli Montoto S., Muraca G., Ruiz M.E., Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects, Front. Mol. Biosci., 7, (2020)
  101. Scriboni A.B., Couto V.M., Ribeiro L.N.D.M., Freires I.A., Groppo F.C., de Paula E., Franz-Montan M., Cogo-Muller K., Fusogenic Liposomes Increase the Antimicrobial Activity of Vancomycin Against Staphylococcus aureus Biofilm, Front. Pharmacol., 10, (2019)
  102. Selvamani V., Characterization and Biology of Nanomaterials for Drug Delivery, pp. 425-444, (2019)
  103. Severino P., Chaud M.V., Shimojo A., Antonini D., Lancelloti M., Santana M.H.A., Souto E.B., Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies, Colloids Surf., B, 129, pp. 191-197, (2015)
  104. Shah V.M., Nguyen D.X., Patel P., Cote B., Al-Fatease A., Pham Y., Huynh M.G., Woo Y., Alani A.W., Liposomes produced by microfluidics and extrusion: A comparison for scale-up purposes. Nanomedicine: Nanotechnology, Biology and Medicine, 18, pp. 146-156, (2019)
  105. Shalaby M.-A., Dokla E.M.E., Serya R.A.T., Abouzid K.A.M., Penicillin binding protein 2a: An overview and a medicinal chemistry perspective, Eur. J. Med. Chem., 199, (2020)
  106. Henostroza M.A.B., Curo Melo K.J., Nishitani Yukuyama M., Lobenberg R., Araci Bou-Chacra N., Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis, Colloids Surf., A, 597, (2020)
  107. Shariati A., Dadashi M., Moghadam M.T., van Belkum A., Yaslianifard S., Darban-Sarokhalil D., Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis, Sci. Rep., 10, (2020)
  108. Sharma G., Sharma S., Sharma P., Chandola D., Dang S., Gupta S., Gabrani R., Escherichia coli biofilm: development and therapeutic strategies, J. Appl. Microbiol., 121, pp. 309-319, (2016)
  109. Sharma M., Gupta N., Gupta S., Implications of designing clarithromycin loaded solid lipid nanoparticles on their pharmacokinetics, antibacterial activity and safety, RSC Adv., 6, pp. 76621-76631, (2016)
  110. Sherry N., Howden B., Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam – epidemiology, laboratory detection and treatment implications, Expert Review of Anti-infective Therapy, 16, pp. 289-306, (2018)
  111. Shirodkar R.K., Kumar L., Mutalik S., Lewis S., Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Emerging Lipid Based Drug Delivery Systems, Pharm. Chem. J., 53, pp. 440-453, (2019)
  112. Shivangi, Meena L.S., A Novel Approach in Treatment of Tuberculosis by Targeting Drugs to Infected Macrophages Using Biodegradable Nanoparticles, Appl. Biochem. Biotechnol., 185, pp. 815-821, (2018)
  113. Singh M., Bharadwaj S., Lee K.E., Kang S.G., Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery, J. Control. Release, 328, pp. 895-916, (2020)
  114. Singh N., Verma S.M., Singh S.K., Verma P.R.P., Evidence for bactericidal activities of lipidic nanoemulsions against Pseudomonas aeruginosa, Antonie Van Leeuwenhoek, 107, pp. 1555-1568, (2015)
  115. Sohlenkamp C., Geiger O., Narberhaus F., Bacterial membrane lipids: diversity in structures and pathways, FEMS Microbiol. Rev., 40, 1, pp. 133-159, (2016)
  116. Solleti V.S., Alhariri M., Halwani M., Omri A., Antimicrobial properties of liposomal azithromycin for Pseudomonas infections in cystic fibrosis patients, J. Antimicrob. Chemother., 70, pp. 784-796, (2015)
  117. Bonamonte D., de Marco A., Giuffrida R., Conforti C., Barlusconi C., Foti C., Romita P., Topical antibiotics in the dermatological clinical practice: Indications, efficacy, and adverse effects, Dermatol. Ther., 33, (2020)
  118. Tarrant C., Krockow E.M., Antibiotic overuse: managing uncertainty and mitigating against overtreatment, BMJ Qual Saf, 31, 3, pp. 163-167, (2022)
  119. Tayeb H.H., Sainsbury F., Nanoemulsions in drug delivery: formulation to medical application, Nanomedicine, 13, pp. 2507-2525, (2018)
  120. Thorn C.R., Thomas N., Boyd B.J., Prestidge C.A., Nano-fats for bugs: the benefits of lipid nanoparticles for antimicrobial therapy, Drug Deliv. Transl. Res., 11, pp. 1598-1624, (2021)
  121. Thorpe K.E., Joski P., Johnston K.J., Antibiotic-Resistant Infection Treatment Costs Have Doubled Since 2002, Now Exceeding $2 Billion Annually, Health Aff., 37, pp. 662-669, (2018)
  122. Thu P.N.T., Huong M.N.T., Thi N.T., Thanh H.N., Minh K.P., Combination antibiotic therapy versus monotherapy in the treatment of acute exacerbations of chronic obstructive pulmonary disease: an open-label randomized trial, BMC Infect. Dis., 21, (2021)
  123. Tran L.T.C., Gueutin C., Frebourg G., Burucoa C., Faivre V., Erythromycin encapsulation in nanoemulsion-based delivery systems for treatment of Helicobacter pylori infection: Protection and synergy, Biochem. Biophys. Res. Commun., 493, pp. 146-151, (2017)
  124. Tyers M., Wright G.D., Drug combinations: a strategy to extend the life of antibiotics in the 21st century, Nat. Rev. Microbiol., 17, pp. 141-155, (2019)
  125. Upadhyay S., Mittal E., Philips J.A., Tuberculosis and the art of macrophage manipulation, Pathogens Dis., 76, (2018)
  126. Vaara M., Vaara T., Tyrrell J.M., Structure–activity studies on polymyxin derivatives carrying three positive charges only reveal a new class of compounds with strong antibacterial activity, Peptides (N.Y.), 91, pp. 8-12, (2017)
  127. van Hoogevest P., Review – An update on the use of oral phospholipid excipients, Eur. J. Pharm. Sci., 108, pp. 1-12, (2017)
  128. Briuglia M.-L., Rotella C., McFarlane A., Lamprou D.A., Influence of cholesterol on liposome stability and on in vitro drug release, Drug Del. Transl. Res., 5, pp. 231-242, (2015)
  129. van Hoogevest P., Wendel A., The use of natural and synthetic phospholipids as pharmaceutical excipients, Eur. J. Lipid Sci. Technol., 116, pp. 1088-1107, (2014)
  130. van Krevelen D., te Nijenhuis K., Properties of Polymers Their Correlation with Chemical Structure
  131. their Numerical Estimation and Prediction from Additive Group Contributions, (2009)
  132. van Oss C.J., Stability Versus Flocculation of Aqueous Particle Suspensions, Interface Science and Technology, pp. 113-130, (2008)
  133. Vandeplassche E., Tavernier S., Coenye T., Crabbe A., Influence of the lung microbiome on antibiotic susceptibility of cystic fibrosis pathogens, Eur. Respirat. Rev., 28, 152, (2019)
  134. Vargason A.M., Anselmo A.C., Mitragotri S., The evolution of commercial drug delivery technologies, Nat. Biomed. Eng., 5, pp. 951-967, (2021)
  135. Vatsraj S., Chauhan K., Pathak H., Formulation of a Novel Nanoemulsion System for Enhanced Solubility of a Sparingly Water Soluble Antibiotic, Clarithromycin, J. Nanosci., 2014, pp. 1-7, (2014)
  136. Velkov T., Roberts K.D., Nation R.L., Thompson P.E., Li J., Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics, Future Microbiol., 8, pp. 711-724, (2013)
  137. Verderosa A.D., Totsika M., Fairfull-Smith K.E., Bacterial Biofilm Eradication Agents: A Current Review, Front. Chem., 7, (2019)
  138. Vestby L.K., Gronseth T., Simm R., Nesse L.L., Bacterial Biofilm and its Role in the Pathogenesis of Disease, Antibiotics, 9, (2020)
  139. Bullock A.J., Garcia M., Shepherd J., Rehman I., Sheila M., Bacteria induced pH changes in tissue-engineered human skin detected non-invasively using Raman confocal spectroscopy, Appl. Spectrosc. Rev., 55, pp. 158-171, (2020)
  140. Vinarov Z., Gancheva G., Burdzhiev N., Tcholakova S., Solubilization of itraconazole by surfactants and phospholipid-surfactant mixtures: interplay of amphiphile structure, pH and electrostatic interactions, J. Drug Delivery Sci. Technol., 57, (2020)
  141. Wang D.-Y., van der Mei H.C., Ren Y., Busscher H.J., Shi L., Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections, Front. Chem., 7, (2020)
  142. Butler M.S., Paterson D.L., Antibiotics in the clinical pipeline in October 2019, J. Antibiot., 73, pp. 329-364, (2020)
  143. Celaya L.S., Alabrudzinska M.H., Molina A.C., Viturro C.I., Moreno S., The inhibition of methicillin-resistant Staphylococcus aureus by essential oils isolated from leaves and fruits of Schinus areira depending on their chemical compositions, Acta Biochim. Pol., 61, (2014)
  144. Chao Y.-S., Farrah K., (2019)
  145. Chauhan I., Yasir M., Verma M., Singh A.P., Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery, Adv. Pharm. Bull., 10, pp. 150-165, (2020)
  146. Chetoni P., Burgalassi S., Monti D., Tampucci S., Tullio V., Cuffini A.M., Muntoni E., Spagnolo R., Zara G.P., Cavalli R., Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits, Eur. J. Pharm. Biopharm., 109, pp. 214-223, (2016)
  147. Cooley M., Sarode A., Hoore M., Fedosov D.A., Mitragotri S., sen Gupta A., Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale, Nanoscale, 10, pp. 15350-15364, (2018)
  148. Dadgostar P.,

    Antimicrobial Resistance: Implications and Costs

    , Inf. Drug Resist, 12, pp. 3903-3910, (2019)
  149. Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M., Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems, Pharmaceutics, 10, (2018)
  150. Daneman N., Chateau D., Dahl M., Zhang J., Fisher A., Sketris I.S., Quail J., Marra F., Ernst P., Bugden S., Fluoroquinolone use for uncomplicated urinary tract infections in women: a retrospective cohort study, Clin. Microbiol. Infect., 26, pp. 613-618, (2020)
  151. De Oliveira I.F., Barbosa E.J., Peters M.C.C., Henostroza M.A.B., Yukuyama M.N., dos Santos Neto E., Lobenberg R., Bou-Chacra N., Cutting-edge advances in therapy for the posterior segment of the eye: Solid lipid nanoparticles and nanostructured lipid carriers, Int. J. Pharm., 589, (2020)
  152. Dhiman N., Awasthi R., Sharma B., Kharkwal H., Kulkarni G.T., Lipid Nanoparticles as Carriers for Bioactive Delivery, Front. Chem., 9, (2021)
  153. Dhingra S., Rahman N.A.A., Peile E., Rahman M., Sartelli M., Hassali M.A., Islam T., Islam S., Haque M., Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter, Front. Public Health, 8, (2020)
  154. Dmitriev B., Toukach F., Ehlers S., Towards a comprehensive view of the bacterial cell wall, Trends Microbiol., 13, pp. 569-574, (2005)
  155. Doktorovova S., Souto E.B., Silva A.M., Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers – A systematic review of in vitro data, Eur. J. Pharm. Biopharm., 87, pp. 1-18, (2014)
  156. Donlan R.M., Biofilm Formation: A Clinically Relevant Microbiological Process, Clin. Infect. Dis., 33, pp. 1387-1392, (2001)
  157. Dorr T., Moynihan P.J., Mayer C., Editorial: Bacterial Cell Wall Structure and Dynamics, Front. Microbiol., 10, (2019)
  158. Duval R.E., Grare M., Demore B., Fight Against Antimicrobial Resistance: We Always Need New Antibacterials but for Right Bacteria, Molecules, 24, (2019)
  159. Ebrahimi S., Farhadian N., Karimi M., Ebrahimi M., Enhanced bactericidal effect of ceftriaxone drug encapsulated in nanostructured lipid carrier against gram-negative Escherichia coli bacteria: drug formulation, optimization, and cell culture study, Antimicrob. Resist. Infect. Control, 9, (2020)
  160. Felden B., Cattoir V., Bacterial Adaptation to Antibiotics through Regulatory RNAs, Antimicrob. Agents Chemother., 62, (2018)
  161. Ferguson E.L., Azzopardi E., Roberts J.L., Walsh T.R., Thomas D.W., Dextrin-Colistin Conjugates as a Model Bioresponsive Treatment for Multidrug Resistant Bacterial Infections, Mol. Pharm., 11, pp. 4437-4447, (2014)
  162. Ferreira M., Ogren M., Dias J.N.R., Silva M., Gil S., Tavares L., Aires-da-Silva F., Gaspar M.M., Aguiar S.I., Liposomes as Antibiotic Delivery Systems: A Promising Nanotechnological Strategy against Antimicrobial Resistance, Molecules, 26, (2021)