Phenotyping Superagers Using Resting-State fMRI

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER SOC NEURORADIOLOGY
Autores
Citação
AMERICAN JOURNAL OF NEURORADIOLOGY, v.44, n.4, p.424-433, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND AND PURPOSE: Superagers are defined as older adults with episodic memory performance similar or superior to that in middle-aged adults. This study aimed to investigate the key differences in discriminative networks and their main nodes between superagers and cognitively average elderly controls. In addition, we sought to explore differences in sensitivity in detecting these functional activities across the networks at 3T and 7T MR imaging fields. MATERIALS AND METHODS: Fifty-five subjects 80 years of age or older were screened using a detailed neuropsychological protocol, and 31 participants, comprising 14 superagers and 17 cognitively average elderly controls, were included for analysis. Participants underwent resting-state-fMRI at 3T and 7T MR imaging. A prediction classification algorithm using a penalized regression model on the measurements of the network was used to calculate the probabilities of a healthy older adult being a superager. Additionally, ORs quantified the influence of each node across preselected networks. RESULTS: The key networks that differentiated superagers and elderly controls were the default mode, salience, and language networks. The most discriminative nodes (ORs > 1) in superagers encompassed areas in the precuneus posterior cingulate cortex, prefrontal cortex, temporoparietal junction, temporal pole, extrastriate superior cortex, and insula. The prediction classification model for being a superager showed better performance using the 7T compared with 3T resting-state-fMRI data set. CONCLUSIONS: Our findings suggest that the functional connectivity in the default mode, salience, and language networks can provide potential imaging biomarkers for predicting superagers. The 7T field holds promise for the most appropriate study setting to accurately detect the functional connectivity patterns in superagers.
Palavras-chave
Referências
  1. Aertsen A, 2021, NAT COMPUT SCI, V1, P782, DOI 10.1038/s43588-021-00159-z
  2. Albert MS, 2011, ALZHEIMERS DEMENT, V7, P270, DOI 10.1016/j.jalz.2011.03.008
  3. Amodio DM, 2006, NAT REV NEUROSCI, V7, P268, DOI 10.1038/nrn1884
  4. Vu AT, 2017, NEUROIMAGE, V154, P23, DOI 10.1016/j.neuroimage.2016.11.049
  5. Balchandani P, 2015, AM J NEURORADIOL, V36, P1204, DOI 10.3174/ajnr.A4180
  6. Beisteiner R, 2011, NEUROIMAGE, V57, P1015, DOI 10.1016/j.neuroimage.2011.05.010
  7. Bielczyk NZ, 2019, NETW NEUROSCI, V3, P1009, DOI 10.1162/netn_a_00099
  8. Binder JR, 2009, CEREB CORTEX, V19, P2767, DOI 10.1093/cercor/bhp055
  9. Bland JM, 2000, BRIT MED J, V320, P1468, DOI 10.1136/bmj.320.7247.1468
  10. Brucki SMD, 2003, ARQ NEURO-PSIQUIAT, V61, P777, DOI 10.1590/S0004-282X2003000500014
  11. Colizoli O., 2020, COMPARING FMRI RESPO, DOI [10.1101/2020.05.12.090175, DOI 10.1101/2020.05.12.090175]
  12. de Godoy LL, 2021, AM J NEURORADIOL, V42, P1790, DOI 10.3174/ajnr.A7262
  13. de Godoy LL, 2021, NEURORADIOLOGY, V63, P663, DOI 10.1007/s00234-020-02562-1
  14. de Paula DR, 2017, BRAIN BEHAV, V7, DOI 10.1002/brb3.626
  15. FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
  16. Friedman J, 2010, J STAT SOFTW, V33, P1, DOI 10.18637/jss.v033.i01
  17. Gefen T, 2015, J NEUROSCI, V35, P1781, DOI 10.1523/JNEUROSCI.2998-14.2015
  18. Grady C, 2016, NEUROBIOL AGING, V41, P159, DOI 10.1016/j.neurobiolaging.2016.02.020
  19. Hale JR, 2010, MAGN RESON MATER PHY, V23, P339, DOI 10.1007/s10334-010-0220-0
  20. Harrison TM, 2018, NEUROBIOL AGING, V67, P162, DOI 10.1016/j.neurobiolaging.2018.03.024
  21. Heaton RK., 2004, PAR
  22. Isaacs BR, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0236208
  23. Jones SE, 2021, MAGN RESON IMAGING C, V29, P1, DOI 10.1016/j.mric.2020.09.001
  24. Kraff O, 2017, J MAGN RESON IMAGING, V46, P1573, DOI 10.1002/jmri.25723
  25. Krall SC, 2015, BRAIN STRUCT FUNCT, V220, P587, DOI 10.1007/s00429-014-0803-z
  26. La Corte V, 2016, FRONT AGING NEUROSCI, V8, DOI 10.3389/fnagi.2016.00204
  27. Maher AC, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0186413
  28. McKhann GM, 2011, ALZHEIMERS DEMENT, V7, P263, DOI 10.1016/j.jalz.2011.03.005
  29. Mevel Katell, 2011, Int J Alzheimers Dis, V2011, P535816, DOI 10.4061/2011/535816
  30. Montembeault M, 2019, CORTEX, V117, P284, DOI 10.1016/j.cortex.2019.03.018
  31. Morris LS, 2019, TRANSL PSYCHIAT, V9, DOI 10.1038/s41398-019-0425-6
  32. Mueller KD, 2016, J ALZHEIMERS DIS, V54, P1539, DOI 10.3233/JAD-160252
  33. Newton AT, 2012, NEUROIMAGE, V59, P2511, DOI 10.1016/j.neuroimage.2011.08.096
  34. Nickerson LD, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00115
  35. Nitrini Ricardo, 2007, Dement. neuropsychol., V1, P32, DOI 10.1590/S1980-57642008DN10100006
  36. Onoda K, 2012, J COGNITIVE NEUROSCI, V24, P2186, DOI 10.1162/jocn_a_00269
  37. Orban GA, 2008, PHYSIOL REV, V88, P59, DOI 10.1152/physrev.00008.2007
  38. Park CH, 2022, CEREB CORTEX, V32, P4183, DOI 10.1093/cercor/bhab474
  39. PFEFFER RI, 1982, J GERONTOL, V37, P323, DOI 10.1093/geronj/37.3.323
  40. Raimondo L, 2021, NEUROIMAGE, V243, DOI 10.1016/j.neuroimage.2021.118503
  41. Rogalski EJ, 2013, J COGNITIVE NEUROSCI, V25, P29, DOI 10.1162/jocn_a_00300
  42. Rogalski EJ, 2019, ALZH DEMENT-DADM, V11, P560, DOI 10.1016/j.dadm.2019.05.008
  43. Schaefer Alexander, 2018, Cereb Cortex, V28, P3095, DOI 10.1093/cercor/bhx179
  44. Schneider F, 2008, NEUROSCIENCE, V157, P120, DOI 10.1016/j.neuroscience.2008.08.014
  45. Shirk SD, 2011, ALZHEIMERS RES THER, V3, DOI 10.1186/alzrt94
  46. Sladky R, 2013, EUR J RADIOL, V82, P728, DOI 10.1016/j.ejrad.2011.09.025
  47. Sun FW, 2016, J NEUROSCI, V36, P9659, DOI 10.1523/JNEUROSCI.1492-16.2016
  48. Tomasi D, 2012, MOL PSYCHIATR, V17, P841, DOI 10.1038/mp.2011.177
  49. van den Heuvel MP, 2013, TRENDS COGN SCI, V17, P683, DOI 10.1016/j.tics.2013.09.012
  50. van der Zwaag W, 2009, NEUROIMAGE, V47, P1425, DOI 10.1016/j.neuroimage.2009.05.015
  51. Van Essen DC, 2013, NEUROIMAGE, V80, P62, DOI 10.1016/j.neuroimage.2013.05.041
  52. Wang XX, 2019, CEREB CORTEX, V29, P242, DOI 10.1093/cercor/bhx322
  53. Wu LY, 2014, J ALZHEIMERS DIS, V40, P993, DOI 10.3233/JAD-131574
  54. Zhang JH, 2020, CEREB CORTEX, V30, P72, DOI 10.1093/cercor/bhz071
  55. Zhang LW, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-63540-4